生物研究性学习报告(2)

学习报告
2012/3/2
凤凰何少鸟何多,啄尽人间千石食.
究竟苏轼画中确实有100只鸟,还是只有8只鸟呢 原来诗人使用了数论中整数分拆的方法,把100分成两个1,三个4,五个6和七个8之和,含而不露地落实了百鸟图中的"百"字:
1+1+3×4+5×6+7×8=100
可谓匠心独具.
整数的分拆问题,即把一个正整数按某些条件分成若干个正整数之和的问题,是数论和组合论中一个非常活跃的数学分枝,它涉及广泛而艰深的数学理论.著名的"歌德巴赫猜想"也可以看成两个素数之和.整数的分拆也是诗歌中常用的修饰手法.
值得注意的是,古代许多有名诗人在他们的作品中,表达那些不明确的,特别是带有明显的夸张,强烈的感情以及有神秘色彩的大数时,都很喜欢用一些由2,3,5,为质因数乘起来的数字,如:
飞流直下三千尺,疑是银河落九天.(李白)
3000=
日啖荔枝三百颗,不辞长作邻南人.(苏轼)
寓言,是文学作品的重要形式.向来都给人以深刻的启示.寓言中所谓科学寓言一类,它的某些素材就直接取材自数学知识.
有这样一则寓言:古印度的一个宰相,发明了一种"将棋"供国王娱乐.国王为此非常高兴,他让宰相自己提出奖赏什么.宰相要求在他发明的那张有64个方格的(转载自第一范文网http://www.网址未加载,请保留此标记。)棋盘内放些麦粒,第一格放1粒,第二格放2粒,第三格放4粒,照此下去,下一格所放的麦粒都比前一格增加一倍.国王不假思索便答应了.第二天,国王的财政大臣气急败坏地跑来报告,他统计了全国的小麦储备,根本无法兑现这笔奖赏.利用等比级数的求和公式可算出宰相要求的麦粒数目是:
根据估算,一立方米的仓库大约可放 粒麦子,而宰相要求的麦粒数是 ,需要 立方米的仓库来储存.如果仓库高4米,宽10米,它的长度需要 千米,约等于地球与太阳之间的距离的两倍,或等于地球赤道长的7000倍.这批小麦的总数,全世界的劳动人民至少要2000年才能生产出来,国王拿什么来兑现呢
还有一则,一个人到草原上买地,卖主的卖地方式很特别.只要交1000卢布,他可以在一天之内,从太阳出山开始,由草原上的任一点出发,在草原上走到太阳落山,在日落之前,他回到了出发点,那他一天所走的路线所围成的土地,就算他买到的.这个人虽然按时走回原地,但因为体力不支,立刻身亡.他是怎样走的 他先沿一条直线一口气走了10俄里,然后向左拐弯90 ,断续前进了2俄里.这时候,他发现天色不早了,他已经走了24.7俄里的路程.于是,他不得不改变前进的方向,直接向出发点跑去.终于在日落之前跑了15俄里.他这一天共跑了42.35公里的路程,围住了约86.72平方公里的土地!他所走的路线是一个直角梯形,这是一种很不合理的走法.懂得几何的人都知道,如果走一个正方形,围成同样多的面积只要走37公里,少走5公里.如果跑一个圆圈,围住同样多的土地,则只需要跑33公里.只相当于他所跑路程的78%,也许还不致于累死! 第一范文 网www.网址未加载整理该文章……
任何时代,任何国家的文明都可以通过其建筑反映出来.建筑不仅是综合技术的标志,也是精神文明的象征.就如北京内城的建筑结构中,正阳门,天安门,午门,太和殿,景山,鼓楼,钟楼立于长达八公里的南北中轴线上,两旁的宫殿都呈对称分布.太和殿上的九龙宝座也刚好摆放在这条中轴线上.而景山上的万春亭就是北京内城的几何中心.在这里,多少也会表现了皇权至上的实质.
建筑的风格,建筑的审美要求,也是数学思想的反映.
在日常生活中,简单的正则构图可为平面(如墙壁,地板)填充视觉上的空白感.可曾留意,一般用来密铺平面的正则图案.有哪几款 要密铺平面,关键在于每块正则图形在接合于一点时,其内角的整数倍数是否相当于同顶角(在一相同顶点上,全部角的总和等于360 .n边形的内角和=180 ×(n-2).