约 数 和 倍 数(通用17篇)

约 数 和 倍 数(通用17篇)

约 数 和 倍 数(通用17篇)

约 数 和 倍 数 篇1

一、教学内容:原通用教材六年制小学数学第十册第32—33页例1、例2,练习九第4—7题。

二、教学目的:使学生理解约数和倍数的意义,初步学会寻找一个数的约数和倍数的方法。

三、教学过程:

师:同学们,我们已经学习了自然数、整数和整除的知识。现在老师想了解一下,你们对这些知识学得怎么样。请同学们想一想:什么样的数叫做自然数?

生:用来表示物体个数的1、2、3、4……等都叫做自然数。

师:很好。那么,有没有最小的自然数呢?

生:有最小的自然数。

师:最小的自然数是几?

生:最小的自然数是1。

师:有没有最大的自然数?

生:没有。

师:为什么?

生:因为自然数是无限的。

师:因为自然数的个数是无限的,所以就没有最大的自然数。那么,请大家想一想:零是不是自然数?

生:零不是自然数。零是整数。

师:为什么零不是自然数?

生:因为零不能够表示物体的个数。

师:零不是通过数物体个数得来的,所以零不是自然数。[出示小黑板]大家来看看,小黑板上的两句话对不对?先看第一句话。

生:“零和自然数都是整数”这句话是对的。

师:再看第二句。

生:“整数就是零和自然数”这句话是错的。因为除了零和自然数以外,还有我们没有学过的整数。

师:对!除了零和自然数以外,还有其他的整数,不过现在我们还没有学到。现在请大家想想:什么叫做整除?

生:数a除以数b,除得的商正好是整数而没有余数,我们就说,数a能被数b整除。

师:这里所说的数a和数b,一般指的是什么数?

生:一般指的是自然数。

师:好。[出示小黑板]现在来看看这些算式里哪些是属于整除?

生:“15÷3=5”是整除,“24÷2=12”是整除,“8÷4=2”是整除。

师:那么其他几个算式是不是属于整除?[指“14÷3=4……2”]这是不是整除?为什么?

生:不是。因为它有余数。

师:[指“25÷2=12.5”]这个算式呢?

生:不是。因为它的商是小数。

师:[指“0.8÷0.4=2”]这个算式呢?

生:也不是。因为它的被除数和除数都是小数。

师:对。只有被除数、除数和商都是整数,而且没有余数,才是整除。大家对这方面的知识学得很好。今天,我们要在这个基础上继续学习约数和倍数。[板书“约数和倍数”]通过这节课的学习,要求每个同学都要弄清楚什么叫做约数,什么叫做倍数,并且要学会找一个数的约数和倍数的方法。

师:[指着小黑板上“15÷3=5”的算式]我们知道,15能被3整除。我们就说,15是3的倍数,3是15的约数。请同学们跟老师一起说。

师:[合]15是3的倍数,3是15的约数。

生:

师:我们还可以这样说:因为15能被3整除,所以15是3的倍数,3是15的约数。一齐说一遍。

师:

生:[合]因为15能被3整除,所以15是3的倍数,3是15的约数。

师:现在大家再看第二个能够整除的算式。[指“24÷2=12”]在这里,哪个数是哪个数的倍数?哪个数是哪个数的约数?

生:24是2的倍数,2是24的约数。

师:[指“8÷4=2”]在这个算式里呢?

生:8是4的倍数,4是8的约数。

师:我们再来看这个算式。[指“0.8÷0.4=2”]能不能说0.8是0.4的倍数,0.4是0.8的约数呢?

生:不能。因为除数和被除数都是小数。

师:也就是说,0.8÷0.4=2这个算式不是整除,所以不能说0.8是0.4的倍数或0.4是0.8的约数。我们说一个数是另一个数的倍数或约数时,有一个前提,那就是要能够整除。现在你们能不能自己举出一些例子来说明倍数和约数?生(1):6÷3=2。6是3的倍数,2是6的……3是6的约数。

师:6是3的倍数,3是6的约数。他刚才还想说2是6的约数。大家想一想,2是不是6的约数?

生:是的。

师:因为6÷2=3,所以2也是6的约数。现在请哪个同学再来举几个例子。生(2):60÷5=12,60是5的倍数,5是60的约数。

生(3):24÷8=3,24是8的倍数,8是24的约数。

师:现在请大家想想:什么叫做约数?什么叫做倍数?生(1):在整除的情况下,被除数是除数的倍数,除数是被除数的约数。生(2):a能被b整除,a是b的倍数,b是a的约数。

师:现在请大家把课本翻到第32页,看看书上是怎样说的,然后再把它们读一遍。

生:[齐]如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

师:[出示小黑板]请看下面的说法对不对。第一句是“21是7的倍数,7是21的约数。”这句话对不对?

生:[齐]对。

师:再看第二句:“6是6的倍数,6也是6的约数。”这句话对不对。

生:这句话是对的。

师:为什么?

生:因为6÷6=1,6能被6整除,所以6是6的倍数,6也是6的约数。

师:再看这一句:“20是倍数,10是约数。”这种说法对不对?

生:不对。因为它只告诉我们:“20是倍数,10是约数。”没有告诉我们20是哪个数的倍数,10是哪个数的约数。

师:是的。光说一个数是倍数或一个数是约数,这种说法是很不清楚的。20是4的倍数,20是40的约数。所以今后在说约数或倍数的时候,一定要说清楚哪个数是哪个数的倍数,哪个数是哪个数的约数。[继续出示小黑板,让学生判断各组数中,哪个数是另一个数的约数,哪个数是另一个数的倍数]第一组:72和8。

生:72是8的倍数,8是72的约数。

师:第二组:140和20。

生:140是20的倍数,20是140的约数。

师:第三组:35和105。

生:105是35的倍数,35是105的约数。

师:第四组:50和1000。

生:1000是50的倍数,50是1000的约数。

师:说得很好。现在我们要学习寻找约数的方法。比如,要找15的约数有哪几个,24的约数有哪几个。[出示例1]要找15的约数有哪几个,可以这样想:15分别能被哪些数整除?可以从最小的数找起。你们找一找。

生(1):15能被1整除。[教师板书:1]

生(2):15能被3整除。[教师板书:3]

生(3):15能被5整除。[教师板书:5]

生(4):15能被15整除。[教师板书:15]

师:15除了能被这4个数整除以外,还能不能被其他什么数整除?

生:[齐]没有了。

师:这就是说,15只能被1、3、5、15这四个数整除。那我们就说,15的约数有1、3、5、15四个。[在1、3、5、15前板书:“15的约数有:”]会找一个数的约数了吗?用这种方法找一找,24的约数有哪几个?从小到大开始去找。

生(1):24的约数有1、2、3、4、6、8、24。[教师板书:l、2、3、4、6、8、24]

生(2):还有12。[教师在“8”和“24”之间板书“12”]

师:刚才我们用除的方法来找15和24的约数。用这种方法去找约数,比较慢。如果一个数的约数比较多的话,就容易把其中的某些约数漏掉,像刚才那位同学找24的约数就漏掉了12。

请同学们想想,能不能找出一种既快又不容易漏掉的好方法?

生:可以一对一对地找。例如用24除以1,就得到24。

]下面请同学们用这种方法找100的约数有哪几个。

生(1):1和100,2和50,4和25,5和20。

生(2):还有10和10。

]

师:最后找的两个因数都是10,我们写约数时只写一个10。

师:请同学们再看一看,这些数的约数有没有全部找出来?

生:[齐]全部找出来了。

师:从刚才找约数的过程中,你发现了什么?[略等片刻]最小的约数都是几?最大的约数都是什么样的数?

生:最小的约数都是1。15的约数中最大的是15,24的约数中最大的是24,100的约数中最大的是100。

师:这就是说,在一个数的所有约数中,最小的约数是1,最大的约数是它的本身。因为一个数的约数不会小于1,也不会大于它的本身,所以一个数的约数的个数是有限的。[出示小黑板]下面请同学们看一看这些说法对不对?应该怎样说才对?

师:[读题]42的约数有2、3、6、7、14、21。

生:错的。42的约数还有1和42。

师:这句话错就错在少了42最小的约数1和42最大的约数42。我们在寻找一个数的约数的时候,很容易会把最小的约数1和最大的约数——即这个数的本身给忘了。请大家要注意。再看下面一句:“25的约数有1、5、5、25。”这句话对不对?

生:这句话也是错的。应该说,25的约数有1、5、25。

师:这句话里多了一个5,就重复了。下面请哪个同学说说,10的约数有哪几个?

生:10的约数有1、2、5、10。

师:13的约数呢?

生:13的约数有1和13。

师:36的约数呢?

生(1):36的约数有1、2、3、6、8、12、24、36。

师:他说得对不对?

生(2):他说错了。应该是,36的约数有1、36;2、18;3、12;4、9;6。

师:对。一对一对找一个数的约数就不容易发生错误。现在再来学习寻找倍数的方法。[出示例2]2的倍数有哪些?3的倍数有哪些?要找一个数的倍数,可以这样来想:这个数的1倍是多少,2倍是多少,3信是多少,依此类推。现在大家先来找2的倍数。

生:有2、4、6、8、10,等等。[教师板书:2、4、6、8、10]

师:还有多少?能把它们全部写下来吗?

生:还有很多很多,不能全部写下来。

师:那我们就在后面用省略号表示。[在“10”的后面板书:……]读的时候,这里的省略号可以读成“等等”。现在再来看3的倍数。

生:3的倍数有3、6、9、12,等等。[教师板书:3、6、9、12、……]

师:为什么前面找约数的时候,最后用句号表示。而在这里找倍数时,后面用省略号来表示?

生:因为15、24和100的约数全找出来了,而2和3的倍数还没有写完。

师:一个数的约数的个数是有限的,全都找出来了,最后就用句号表示。而一个数的倍数的个数是无限的,不可能全部找出来,所以后面用省略号来表示。现在来看看,一个数的最小的倍数是什么样的数?

生:一个数最小的倍数是它本身。

师:有没有最大的倍数呢?

生:没有。

师:为什么?

生:因为自然数是无限的。

师:因为自然数的个数是无限的,所以一个数的倍数的个数也是无限的,最小的倍数是它本身,没有最大的倍数。[出示小黑板]看看下面的说法对不对?把不对的地方改过来。先看第一句:5的倍数有10、15、20、25,等等。

生:倍数里少个5。应该说,5的倍数有5、10、15、20、25,等等。

师:对。再看下面一句:6的倍数有6、12、24、48,等等。

生:这一句也错的。在12和24中间,少了个18。

师:对。48后面用了省略号,表示48后面还有很多6的倍数没写出来;48前面没有省略号,在48前面6的倍数就要一个不漏地按顺序写出来。再看第三句:7的倍数有7、14、21、28。

生:错的。在28后面不应该用句号,应该用省略号。

师:请看第四句:10以内3的倍数有3、6、9。

生:这一句是对的。

师:这里用了句号也是对的吗?为什么?

生:是对的,因为10以内3的倍数到9就为止了。

师:很好。因为题目限制了是10以内的。10以内的3的倍数只有3个,所以在最后用了句号。现在请同学们分别说出10、13、36的倍数有哪些,可以按从小到大的顺序先说出5个,后面再用“等等”表示。

生(1):10的倍数有10、20、30、40、50,等等。

生(2):13的倍数有13、26、39、52、65,等等。

生(3):36的倍数有36、72、108、144、180,等等。

师:刚才我们找出一个数的约数和倍数,都是用文字叙述表达出来的。除了用文字叙述表达外,还可以用图来表示。现在请大家把课本翻到第32页,看例1、例2下面的图,这就是用图来表示一个数的约数或倍数的。这种方法是,先画一个圈,圈的上面注明是哪个数的约数或倍数,然后把这个数的约数或倍数填在这个圈里。填写时,数和数之间要空开一点,不能紧挨在一起。在表示倍数的图里,还有许多倍数不可能全写出来,就在最后用省略号表示。现在请把课本翻到第33页,请大家用刚才讲的方法,把18的约数、20以内4的倍数和15的倍数,分别填在第6题的三个圈里。

[指名三人分别填在小黑板上,其他学生填在书上。填好后,出示小黑板进行评讲。然后引导学生阅读课文,齐读第32页的第一节和例1、例2后面的结论]

师:大家还有什么问题吗?如果没有问题了,有两道题请大家回答一下。先看课本第34页的第7题。说一说,在下面的数中,哪些是60的约数,哪些是6的倍数?

生:[看课本回答]3、4、12、60是60的约数;12、24、60是6的倍数。

师:[出示小黑板]在下面的几个数中,哪个数是哪个数的约数?哪个数是哪个数的倍数?

生(1):4是4、8、12、24的约数。

生(2):4还是36、60的约数。

生(3):36是4、6、12的倍数。

生(4):36也是36的倍数。

生(5):12是4、6、12的倍数,12是12、24、36、60的约数。

……

师:通过这堂课的学习,我们懂得了什么?

生(1):我懂得了什么叫做约数,什么叫做倍数。

生(2):我懂得了一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

生(3):我还懂得了一个数的倍数的个数是无限的,最小的倍数是它本身。

生(4):我还学会了找一个数的约数和倍数的方法。

师:好。回去以后把这部分课文再看看,并把第34页的第8题做在自己的本子上。

约 数 和 倍 数 篇2

的意义

教育理念:

让学生积极主动地参与数学学习活动。

教学内容:六年制小学数学第十册50页的内容。

教学重点:数的整除的意义。

教具、学具准备:数字卡片1——75。

教学目标:

1、 使学生巩固数的整除的意义,掌握的概念。

2、 能正确判断谁是谁的倍数和约数,提高学生的判断能力,培养初步的归纳能力和合作意识。

3、 引导学生探索之间的相互依存关系,渗透辨证唯物主义思想。

4、 、通过游戏、竞赛等实践活动,使学生从中体验学习数学的乐趣,激发学生学习的情感和探求知识的欲望,树立学习的自信心,获得成功的体验。

5、 “的意义”是数的整除这部分知识的第一课时。万事开头难,众所周知,好的开头是成功的一半,那么上好“的意义”这一节课将是学好数的整除这部分知识的首要一关。

案例描述:

课前我组织学生编号,由于我们班有73个学生,学号就是1—73,我也加入学生的行列,我是74号。要求学生在课前每人用一张硬纸板做好卡片,并写上自己的编号。学生兴趣很高,总是问我做这个干什么呀,我说我们做游戏用,学生特别高兴。课一开始,我用电脑出示如下算式:

23÷7=3……2 6÷5=1.2 3.2÷16=0.2

10÷3=3……1 2.2÷1.1=2 18÷0.6=30

15÷3=5 24÷12=2 36÷6=6

师:观察这些算式,想一想计算除法会出现哪些情况?请你对这些算式进行分类。

学生迅速地动了起来,我仔细地观察着学生的情况,有的分成了两类(有余数的和无余数的),有的分成了与前面不同的两类(整数除法和小数除法),还有的分成了三类(整除的、小数除法、有余数的)。此时我说:“同学们,请把你分得的结果在小组内交流交流,并说说你是按什么标准分的。”此刻教室里沸腾起来了,同学们争先恐后地议论起来,有的甚至争论起来。我在一旁倾听着同学们的争论,欣慰地笑了。待争论有所平息之时,我说:“哪个小组愿意把你们的结果说给大家听听。”一组、二组……十二个小组的代表纷纷把他们的结果放到实物投影仪上展示,并有条有理地进行讲述。每种分发都讲明了他们分类的标准、依据。我说:“各组分得都有道理,那么我们选取分三类的这种先来研究好吗?”学生的兴趣高涨:“好——”。

15÷3=5

师:大家能不能给分三类的 24÷12=2 这一类起个名字? 36÷6=6

学生们说叫整除。

师:那请同学们说一说什么叫整除?(学生七嘴八舌地说着)

生1:整数除以整数,没有余数叫整除。

生2:整数a除以整数b,商是整数而没有余数,叫整除。

生3:整数a除以整数b(b≠0),商是整数而没有余数,叫整除。

生4:整数a除以整数b(b≠0),商是整数而没有余数,我们就说(a能被b整除)。

生5:整数a除以整数b(b≠0),商是整数而没有余数,我们就说(a能被b整除),也可以说b能整除a。

学生的表述逐渐趋于准确、完善。此时整除这一概念已基本明确建立。

师:同学们,如果数a能被数b整除,那么我们想不想给它们各再取一个名字呢?

同学们讷闷了,我趁机宣布:数a叫做数b的倍数,数b叫做数a的约数。学生连连点头,并自言自语地说着:数a叫做数b的倍数,数b叫做数a的约数;被除数叫做倍数,除数叫做约数。虽然这种说法欠准确,但它能够反映学生的理解程度。

32÷8=4

师:同学们看 这两个算式:说说它们之间的关系, 8÷1=8

你发现了什么?

生1:我发现8既是约数又是倍数。

生2:我发现同一个数既可能是倍数,又可能是约数。

生3:我发现倍数和约数是相对而言的。

生4:我发现是相互依存的。

师问生4:你能详细讲讲吗?

生4:比如,我是冯晓宁的同桌,冯晓宁是我的同桌。不能说我是同桌,也不能说冯晓宁是同桌。也就是说如果我不是冯晓宁的同桌,冯晓宁也就不是我的同桌。我和冯晓宁的同桌关系是相互依存的:因此是相互依存的。

师:从生4的说法中你们知道了什么?

生:我们不能孤立地说某个数是约数,或某个数是倍数。是相互依存的。

此时此刻,学生对倍数和约数的意义已正确地建立起来了。然后,我说:“同学们,大家学得挺累的,想不想做个游戏轻松轻松。”学生大声喊道:“想……”

请大家拿出课前准备好的编号卡,做好准备。谁想出来做呢?18号学生站了起来。我宣布游戏规则:“当听到18号喊道:“我的朋友快快来”时,请你根据刚才学习的的知识,想一想你与他们有没有关系,如果有关系,那你就是他的朋友,你就要举着你的编号卡快速跑上来,并向大家介绍你与18号有什么关系。

游戏开始了,18号同学喊:“我的朋友快快来……”只见2、3、6、9、36、54、72号学生跑了上来。有些学生说还有1号,这位学生也明白了,不好意思了冲了上来。上来的学生一一向大家介绍着:我是18号的约数,我是18号的倍数,……

师:请同学们帮18号同学检查一下他的朋友到齐了没有,再看看上来的这些同学是不是都是18号的朋友,你是怎么知道的?

生1:我看这些编号能不能被8整除,或18能不能整除这些数。

生2:我看这些数是不是18的约数,或18的倍数。

生3:我觉得18号同学应该把他的朋友按编号从小到大排列,就不容易漏掉了,也容易知道是否到齐了。

此时,同学们频频点头,有的伸出大拇指说:“高见,真是高见。此时18号同学也快速把他的朋友按编号从小到大排列起来。之后,我说:”谁还想找自已的朋友?4号、13号……分别找到了自己的 朋友。随后我(74号)也找到了自已的朋友,同学们亲切地围在我的身旁,脸上露出了会心的微笑。游戏在欢快中进行着,偶尔也有找错朋友的学生,可大家很快帮他正确找到了朋友,叮铃铃……,急促的铃声打断了同学们的游戏。一节课虽然结束了,可同学们热衷的游戏还在延续lty推荐

约 数 和 倍 数 篇3

素质教育的重要着眼点是改变学生的学习方式。实施素质教育就必须要以学生的发展为本,要改变学生在原有的教育教学条件下所形成的那种偏重于记忆和理解、立足于接受教师知识传输的学习方式,帮助学生形成一种主动探究知识、并重视解决实际问题的积极学习方式,这是一种有利于终身学习、发展学习的方式。为了倡导这种学习方式,使素质教育落到实处,我在设计约数和倍数的意义这一课时,采用了以问题为中心,在教师的指导下,让学生以合作交流、讨论、自学等形式主动地去获取知识、应用知识、解决问题,从而使学生的创新精神和实践能力的发展有了切实的落脚点。

综观整堂课,教师教得非常少,而学生讲得非常多,学生之间合作交流多,学生自主学习多,教师只是一个组织者和参与者,学生真正成为学习的主人,不仅积极参与每一个教学环节,切身感受了学习数学的快乐,品尝了成功的喜悦,而且不同的学生得到不同的发展,满足了学生求知、参与、成功、交流和自尊的需要。

约 数 和 倍 数 篇4

1、

课题一:

教学要求 ①使学生进一步理解整除的意义。②使学生掌握整除、约数与倍数的概念,以及它们之间的相互依存关系,渗透辨证唯物主义思想。③培养学生抽象概括与观察思考的能力。

教学重点

教学难点 理解除尽和整除,约数和倍数等概念间的联系和区别。

教学过程

一、创设情境

1、计算下面三组题。

(1)23÷7= (2)6÷5= (3)15÷3=

11÷3= 1.8÷3= 24÷2=

2、观察并回答。

(1)上面哪个算式中的第一个数能被第二个数整除?

(2)在什么情况下,才可以说“一个数能被另一个数整除”?

(3)如果用整数a表示被除数,整数b(b≠0)表示除数,可以怎样说?(让学生看教材第49页关于“整除”的一段话)

3、思考:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

①被除数、除数都是整数,除数不等于0

明确三点 ②商必须是整数 缺一不可

③商的后面没有余数

4、除尽与整除的区别与联系。

(1)像6÷5=1.2 1.8÷3=0.6我们只能说第一个数能被第二个数 。

(2)除尽 被除数和除数(不等于0),不一定是整数,商是有限小数,没有余数。

整除 被除数和除数(不为0)都是整数,商是整数,没有余数。(三整无余)

师:一个数能被另一个数整除表示的是两个整数之间的一种关系,它们还有另一种关系,这就是我们今天要学习的约数和倍数关系(板书课题:)

二、探索研究

1.小组学习——。

(1)让学生看教材第50页有关约数和倍数的一段话。

(2)小组讨论:两个数在什么情况下才有约数和倍数关系?“约数和倍数是相互依存的”是什么意思?

(3)在复习的第1题中,请你指出哪个数是哪个数的倍数,哪个数是哪个数的约数?为什么?

(4)倍与倍数意义一样吗?

如:15是3的倍数,表示15 能被3整除。

1.5是0.3的5倍,5倍表示1.5除以0.3的商。

(5)注意事项。让学生看教材第50页的注意。

三、课堂实践

1.做教材第51页的“做一做”。

2.做练习十一的第1题。

3.做练习十一的第2题。

4.做练习十一的第3题。

5.做练习十一的第4题。

60的约数有 。

6的倍数有 。

四、课堂小结

学生小结今天学习的内容。

约 数 和 倍 数 篇5

教材动起来 思维活起来——“约数和倍数”教学实录与评析

教学内容:

苏教版小学数学第十册P39~40。

教学目标:

1.使学生认识整除的意义,认识约数和倍数,能判断一个除法算式是不是整除的算式,并能说出两个数是否存在约数与倍数的关系。

2.培养学生的观察、比较和综合概括等思维能力,提高学生依据概念判断的能力。

教学过程:

一、联系生活实际,理解“相互依存”关系

师:你在他的哪边?他在你的哪边?(师指左右两生)

生1:我在他的左边,他在我的右边。

师(前、后各起立一位学生):哪位同学能说出这两人的位置关系?

生2:生甲在生乙的前面,生乙在生甲的后面。

师:这是我们实际生活中相互依存的关系,在数学中,数与数之间也有这样相互依存的现象。

[评析:数学源于生活。教师用学生身边的事例,让学生理解相互依存的关系,感受数学就在身边。]

二、在探究过程中,建立整除的概念

15÷3=510÷3=3……11.5÷3=0.5

28÷7=43.3÷1.1=320÷7=2……6

28÷0.7=4035÷11=3……233÷11=3

师:请同学们仔细观察,每道算式中的被除数、除数和商各有什么特点?如果要把这些算式进行分类,你打算怎么分?为什么这样分?

(学生小组讨论,教师巡视指导,然后汇报交流)

生1:我们组认为可以分成两类:一类是除不尽有余数的,另一类是除得尽没有余数的。(同时展示)

①15÷3=5②10÷3=3……1

28÷0.7=4020÷7=2……6

33÷11=335÷11=3……2

3.3÷1.1=3

28÷7=4

1.5÷3=0.5

生2:我们组认为可以分成这样两类:一类是整数除法,另一类是小数除法。(同时展示)

①15÷3=5②28÷0.7=40

28÷7=43.3÷1.1=3

33÷11=31.5÷3=0.5

10÷3=3……1

20÷7=2……6

35÷11=3……2

生3:我们组认为可以分成三类:一类是没有余数的整数除法,一类是有余数的整数除法,一类是小数除法。(同时展示)

①15÷3=5?②10÷3=3……1③1.5÷3=0.5

28÷7=420÷7=2……628÷0.7=40

33÷11=335÷11=3……23.3÷1.1=3

师(指生3的分法):请大家再仔细观察,上述分类中的被除数、除数和商有什么特点?

生4:第①类被除数、除数是整数,商是整数没有余数;第②类的商有余数;第③类是小数除法。

师:像这样一组被除数、除数是整数,商是整数而且没有余数的算式,我们把它称为整除。

师:如15÷3=5,我们可以说15能被3整除,或者说3能整除15。

师:28÷7=4,这道算式谁来说一说?33÷11=3呢?(生答略)

师:像这样的整除算式如果用字母a表示被除数,用字母b表示除数,a和b之间是什么关系?

生:a能被b整除,b能整除a。

师:那么,什么样的式子称为“整除”?

生5:被除数和除数都是整数。

生6:商也是整数,而且没有余数。

生7:b是除数不能为0。

师:整数a除以整数b(b≠0),除得的商正好是整数且没有余数,我们就说a能被b整除,或说b能整除a。

[评析:教师没有被动地照搬教材中静态的教学资源,而是直接把九道除法算式的分类情况展示给学生,让学生仔细观察算式的特点,并说说如何分类,充分调动学生已有的知识储备,使学生轻松自如地把握整除的特征,理解整除和除尽、小数除法的关系,提高了学生观察、比较、分析、归类的能力。]

师:你们认为这段话中哪句比较重要?

生8:整数a除以整数b。

生9:除得的商正好是整数,而且没有余数。

生10:整数b不能为0。

师:为什么b不能为0?把b≠0去掉行吗?

生11:整数b表示除数,0不能做除数。

师:你能举出整除的算式再说一说吗?(生答略)

师:如10÷3=3……1,我们可以说10能被3整除吗?为什么?

生12:因为商有余数,所以10不能被3整除,3不能整除10。

师(指算式1.5÷3=0.5):如果说1.5能被3整除,你们同意吗?

生13:因为被除数和商都是小数,所以1.5不能被3整除。

[评析:出示整除的意义之后,教师请学生说一说哪些词比较重要,在学生交流的过程中,再次强化整除的特征,达到了“润物无声”的效果。]

三、实践与反思(1)

1.投影出示P40“练一练”第一题。(略)

2.投影出示P43练习第2题。(鼓励学生尽可能找到所有整除的关系)

四、建立倍数和约数的概念

师:如果数a能被数b整除,a和b之间就产生了一种关系,是什么关系?(学生自学P39内容)

思考:①什么情况下,可以说a是b的倍数,b是a的约数?②如果数a能被数b整除,可以说a是倍数,b是约数吗?

生1:在整除的情况下,a是b的倍数,b是a的约数。

师:在15÷3=5这个整除的算式中,谁是谁的倍数?谁是谁的约数?

生2:15是3的倍数,3是15的约数。

师:28÷7=4和33÷11=3,你们谁来说一说?(生答略)

师(指20÷7=2……6):我们可以说20是7的倍数,7是20的约数吗?为什么?

生3:20不能被7整除,所以20不是7的倍数,7也不是20的约数。

师:如果数a能被数b整除,能单独说a是倍数,b是约数吗?为什么?

生4:a还可以是别的数的倍数。例如:12÷3=4,12是3的倍数;12÷2=6,12也是2的倍数。

生5:数a能被数b整除,只能说a是b的倍数,b是a的约数。

师:在整除的基础上产生了约数与倍数,约数和倍数就是数学中一种相互依存的关系,所以我们一定要讲清谁是谁的倍数,谁是谁的约数。

[评析:教师在横向上拓宽了教材范围,既让学生认识了约数与倍数,又让学生了解到在什么情况下,两个整数之间不存在约数和倍数的关系。]

五、实践与反思(2)

1.投影出示P40“练一练”第2题。(略)

2.游戏:出数说关系。

师:4和20,请大家利用今天所学的知识说一说它们的关系。

生1:20能被4整除,4能整除20。

生2:20是4的倍数,4是20的约数。

师:14和30呢?

生3:30不能被14整除,14不能整除30;30不是14的倍数,14也不是30的约数。

……

[评析:以游戏的形式让学生练习,保持了学生的学习兴趣,使学生灵活地掌握了整除、约数和倍数的特征。]

3.下面的说法对吗?为什么?

(1)8能整除4。

(2)因为36÷6=6,所以36是倍数,6是约数。

(3)5是5的倍数,5又是5的约数。

(4)凡是能除尽的一定能整除。

(5)63÷3=21,3和21都是63的约数。

4.游戏:找朋友。

师:每个同学都有学号,每个学号都是一个整数。如果老师要找的朋友是你,请你站起来,并且把卡片高高举起,让其他同学看看你是不是我要找的朋友。

师(举卡片10):我是10,我的倍数朋友在哪里?

师(指学号是10的学生):你也是10,为什么是我的倍数朋友?

生1:10能被10整除。

师(举卡片10):我是10,我的约数朋友在哪里?

师:你也是10,为什么又是我的约数朋友?

生1:因为10÷10=1,10能被10整除,所以10也是10的约数。

师:1是不是10的约数?(学生讨论交流)

生2:因为10÷1=10,所以1是10的约数。

师:99是1的倍数朋友吗?1000呢?(生答略)

师:因为任何整数都能被1整除,所以任何整数都是1的倍数,1是任何整数的约数。

师(举卡片1):我是1,我的倍数朋友在哪里?为什么大家都站起来了?

生:因为我们这些数都能被1整除。

师(举卡片0):我是0,我的约数朋友在哪里?0有没有约数朋友?如果有,那么谁是0的约数朋友呢?

(学生讨论交流,也可打开课本P40自学)

生3:我是24,0能被24整除,所以24是0的约数。

生4:我是10,10能整除0,所以10是0的约数。

……

师:因为0能被任何不是零的整数整除,所以0是任何不是零的整数的倍数,任何不是零的整数也都是0的约数。

师:那么,0的约数朋友在哪里?(生答略)

师:今后学习中为了方便,通常在研究约数和倍数的时候,所说的数一般指不是零的自然数。

[评析:教师把“1是任何整数的约数”和“0是任何不是零的整数的倍数,任何不是零的整数也都是0的约数”这两个枯燥的知识点的教学变成了生动活泼的举卡片游戏,在师生互动中解决问题。最后的练习有层次,具有开放性。]

六、总结全课

总评

这节课是概念教学,教师没有落入“枯燥乏味”的老套,而是根据学生的年龄特征和教材特点,灵活地驾驭教材,取得了非常好的教学效果。概括起来主要有以下几个特点:

一、静态教材动态化

新课程强调教师不仅是教材的使用者,同时也是教材的开发者。本教学中,教师在理解、研究教材的基础上,大胆地对教材进行二次开发,实现了教材由静态向动态的转变。

二、教学内容探究化

“教学不是告诉。”教师没有直接把整除的意义告知学生,而是让学生在比一比、摆一摆、议一议、说一说的过程中,探究除法算式的特点,感知整除与除尽、小数除法的不同,顺利突破教学重、难点,体现了“学生是教学的主体”这一新课程的核心理念。

三、概念教学活动化

以往教师在概念教学中大多采用讲解法,教学沉闷,教师讲的吃力,学生听得费劲。而在本节课中,教师让学生在举卡片、找朋友等游戏中掌握了有关概念,课堂气氛活跃生动,学生学得轻松愉快,提高了学生学习数学的兴趣。

约 数 和 倍 数 篇6

教学内容:

苏教版第十册第39页:约数和倍数。

教学目标:

1、学生能理解和掌握整除的意义,培养学生根据信息进行分类、总结、概括的能力。辨析除尽和整除的关系。

2、学生理解和掌握约数和倍数的意义,知道约数、倍数的相互依存的关系,渗透辨证唯物主义思想教育。

3、培养学生观察、比较、分析、判断、概括的能力。

4、调动学生积极参与的学习热情,培养学生自主探索、合作交流的习惯

教学重点:

理解和掌握整除的意义,掌握约数和倍数的意义,理解约数和倍数的相互依存的关系。

教学准备:

投影仪、投影片、卡片。

教学过程:

(一)、整除的意义

1、导入

师:我们已经学习了除法,你能列举几个除法算式吗?

生说师板书在投影片上。

2、分类

(1)师:我也写几个算式(师补充完书p39页中的三类算式):

①15÷3=5 ② 10÷3=3……1 ③20÷7=2……6

④15÷30=0.5 ⑤28÷0.7=40 ⑥ 33÷11=3

⑦35÷11=3……2 ⑧ 28÷7=4 ⑨3.3÷1.1=3

师:根据这些算式中被除数、除数和商的特点请你把这些算式分分类。要求先独立思考,再小组交流、讨论,然后由组长按题号写出你们的分类答案。

(2)生纷纷要求汇报,说出自己怎么分类的以及分类的标准是什么。

师:从以上同学们的发言中可以看出:分类的标准不同所得的答案也不同。我们今天先研究能除尽的情况。(教师板书这些算式到黑板上。)

(3)解释除尽的意思。

师:谁能说说这里的“除尽”是什么意思?(生说。)那么“除不尽”呢?(生说。)

3、整除的特征

(1)除尽分两类

师:接下来我们再仔细观察观察能够“除尽”的这些算式,看看这些算式还能不能再分分类,你准备怎么分?

(生汇报。)

(2)整除的特征

师:按照被除数、除数、商是否都是整数的分类标准(师在板书中圈出整除算式),这样的算式就叫整除。

板书如下:

除 尽

整 除

15÷3=5

15÷30=0.5

33÷11=3

3.3÷1.1=3

28÷7=4

28÷0.7=40

师:谁能概括出整除的特征呢?(生汇报。)

师:这句话有没有要补充的?(生补充:除数不能为0。)

师:谁来完整地说说?(生完整地表述。)

师:你能用字母来概括吗?(生用字母来表述。)

(3)说法介绍

师边说边板书:整数a 除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b 整除,或者说b能整除a。

师指问: 15÷3=5 、33÷11=3 、28÷7=4 可以怎么说?。

4、整除与除尽的关系。

练习p40练一练1:

下面各题中,哪几题的第一个数能被第二个数除尽?哪几题的第一个数能被第二个数整除?为什么?

①51÷3=17 ②9÷18=0.5

③38÷17=2……4 ④12÷12=1

⑤91÷7=13 ⑥8÷6=1……2

师:通过这题的练习你明白了什么?

生小结:⑴整除的特征。

⑵整除与除尽的关系,要求学生用集合图表示。

(二)、约数和倍数的意义

1、看书自学约数和倍数。

师:数a能被数b整除,我们还可以怎么说呢?请自学书p39页。

2、生举例汇报。

师:谁会这样说?(生举例说。)

师:想一想,可以说15是倍数吗?

生纷纷抢着说:不可以,没有说清15是谁的倍数。

师:那就说明约数和倍数有什么关系?

生小结:约数和倍数是相互依存的关系。

3、揭示课题。

师:“约数和倍数”(师板书)就是我们今天要研究的内容。

(三)、巩固练习

1、看算式用约数和倍数造句。

42÷6=7 15÷30=0.5 36÷3=12

学生有些新奇有些激动地造句。

师:42÷6=7 除了可以说42是6的倍数,6是42的约数还可以用约数、倍数造句吗?

学生积极地说:42也是7的倍数,7也是42的约数。

2、学生相互练习说。

师:下面请同桌同学一人说算式一人用约数和倍数造句。

学生兴趣盎然地说起来。

3、“0”、“1”的特点。

师:用今天学的知识我们来玩一个猜号码的游戏。要求是每人先独立思考,然后小组交流、讨论,统一答案再汇报。

猜号码 abcc

a是任何不是0的整数的倍数。

b只有约数1和5。

c是任何整数的约数。

如果学生思考不出来就用填括号先练习。( )÷1=( )

0÷( )=( )

生1抢着说:a是0,b是5,后面不知道。

生2也叫道:我们也认为a是0,b是5,c好象是1吧。

生3赶紧附和:我们跟你们一样,老师对不对啊?

老师用上面的填空让学生看看、想想。

全体学生恍然大悟:对了对了,是0511,我们扬中市电话的区号。

生4:才不是呢,是整个镇江地区电话的区号。

师:从这个游戏中你能知道哪些新的知识?

生小结:“1”是任何整数的约数、“0”是任何不是0的整数的倍数,号码0511是我们镇江地区电话的长途区号。

师介绍:为了方便,我们在研究约数和倍数时,所说的数一般指不是0的自然数。

4、举牌游戏(找一个数的约数或倍数)。

游戏说明:课前给每位同学发放一个写了数的纸牌,课堂老师先提要求,符合老师所说要求的同学就举起手中的牌子。然后改由学生提要求,学生举牌子。

学生情绪高涨,都争着要说要求,一旦要求提出,赶紧看自己牌子上的数是否符合要求,看完自己的还会赶紧看旁边人的牌子,一遇到旁边人该举的没举、不该举的却举起来了就会赶快提醒。

5、全课总结。

师:通过这节课的学习,你认为研究约数和倍数的前提是什么?你能根据今天的学习画出新旧知识的脉络图吗?小组讨论,合作完成。

展示简洁的知识结构图:

图1:除法——除尽——整除——约数和倍数

图2: 整除 ——约数和倍数

除尽 不是整除

除法 除不尽

师:看着这样的图你想到什么?

生1:新旧知识都是相互联系的,旧知识是新知识学习的基础,新知识是旧知识的延续。

生2:我看图2就像一棵树,除法是树根,上面不断地生长着树枝。

生3:我觉得前面的知识学不好就会影响后面的学习,所以学习要一步一个脚印。

6、学生评价。

师:这节课就要结束了,你还有什么想说的吗?可以谈收获也可以评价评价自己或他人。

生1:我觉得自己表现还好。

生2:我弄懂了约数和倍数的意思。

生3:我觉得今天这节课挺有意思的,我们好象在玩游戏,但又学了好多东西。

生4:我又进一步知道了新旧知识之间是有联系的。

生5:我希望每天都让我们上这样生动有趣的课。每堂课都有这么多发言的机会。

二、评析

参与是个体投身认识与实践活动的过程和基本形式。学生主体参与教学是其在教学中主体地位最基本的表现形式,因而具有非常重要的价值。新课程的核心理念是以学生发展为本,让学生参与教学是课程实施的核心。参与的根本目的是解决学生会学习的问题,也就是会自主学习。因此,积极参与和有效参与二者就缺一不可。“约数和倍数”就是在这种理念指导下的有效尝试。

(一)、积极参与是学生自主学习的前提。

从情感上愿意学习就是积极学习,积极学习的情绪状态下学习效果最佳。因此积极参与是学生自主学习的前提。本节课从以下三个方面可以看出学生的参与是积极的:

1、情绪饱满。本节课自始自终贯彻以学生为主体的教育理念,从开头的两次看除法算式分类,学生就充分发表自己的观点;后面的练习,“造句”、“猜号码”、“举牌”就更热闹了,学生每人都想自己说。学生在课堂上表现出的状态是:抢着说、纷纷地说、热烈地交流,这些充分说明了学生具有浓厚的学习兴趣与高昂的学习热情。

2、频繁交往。积极参与应该为学生提供更广阔的交往空间,这种交往应该是多向式、交互式的,既有师生的交往,又有生生的交往。在本节课中,三次采用合作学习,这些生生之间的交往,既为学生交往提供了广阔的空间,又能满足学生的求知欲,发挥学生的主观能动性,还能提高学生的智力活动水平。

3、扩大参与。素质教育强调面向全体,如果课堂教学中只有少数学生参与,那就不是素质教育。在三次小组合作学习的过程中,学生都是人人参与,个个动脑、动口又动手。

(二)、有效参与是自主学习的保证。

新课程的培养目标是培养会学习的人。只有学会怎样去学,也就是会自主学习才能适应终身教育,而有效参与恰恰是思维的参与,思维的真正参与就能开发智力,培养创新能力。因此,有效参与是学生自主学习的保证。在本节课中有效参与表现为:

1、思维活跃。这是学生真正参与教学的关键所在。在本节课中,学生对除法算式的分类必须独立思考,约数和倍数的概念必须自己看书自学,“猜号码”也不是随便瞎猜,要考虑哪些数是符合要求的才能猜出,知识的构建图要理顺新旧知识的关系才能完成。一句话,没有思考就不会有真正的收获。

2、独立学习时间多。独立学习的时间就是学生自由支配的时间。自由支配的时间是学生主体参与的必要条件,也是个性发展的必要条件。本节课的课堂教学中,教师努力把自由支配的时间还给学生,让每一个学生有更多的独立思考时间。

3、表现机会充分。表现是社会人发展的途径。小学生在校学习的过程实际上是个体社会化的过程,而表现则是一个人实现社会化的台阶。在本节课的课堂上,从对除法算式进行各种各样的分类引入整除开始,教师是处处放手,真正做到学生会说的教师不讲,学生有能力探究的教师不教,学生能够升华的教师不去总结,课堂变成了学生舒展灵性的空间。尤其在对待学生学习结果的处理上,“总结”这一大环节教师没有去做,而是给学生一种极好的自我反思的机会。

约 数 和 倍 数 篇7

教学建议

教材分析

是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.

教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

学生学过后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.

教法建议

是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.

复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.

教学设计示例

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除 下载)

1、口算

6÷5 15÷3 23÷7

1.2÷0.3 24÷2 31÷3

2、观察算式和结果并将算式分类.

除 尽

除 不 尽

6÷5=1.2 15÷3=15

1.2÷0.3=4 24÷2=12

23÷7=3……2

31÷3=10……1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书: 15÷3=5 15能被3整除

5、分类

除 尽

除 不 尽

不能整除

整 除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3……2

31÷3=10……1

二、探究新知

(一)进一步理解“整除”的意义.

1、整除所需的条件.

(1)分析: 24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数 整数 整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书: b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和 3 36和12 1.2和 0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.( )

b.19能被3整除.( )

c.3.2能被0.4整除.( )

d.0能被5整除.( )

e.29能整除29.( )

4、“整除”与“除尽”的联系和区别.

讨论:综合以上所学知识讨论,“整除”和“除尽”有什么联系?又有什么区别?

(举例说明)

(二)约数、倍数的意义

1、类推约数、倍数的意义.

(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

(2)学生口述:

24能被2整除,我们就说,24是2的倍数,2是24的约数.

10能被5整除,我们就说,10是5的倍数,5是10的约数.

a能被b整除,我们就说a是b的倍数,b是a的约数.

(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

2、进一步理解约数、倍数的意义.

(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

(2)约数和倍数相互依存的关系.

学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

(3)反馈练习:

A、下面各组数中,有约数和倍数关系的有哪些?

16和2 140和20 45和15

33和6 4和24 72和8

B、判断下面说法是否正确.

a、8是2的倍数,2是8的约数.( )

b、6是倍数,3是约数.( )

c、30是5的倍数.( )

d、4是历的约数.( )

e、5是约数.( )

3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

4、教学例2 :12的约数有哪几个?

(1)引导学生合作学习,讨论分析.

(2)汇报、板书:

12的约数有:1、2、3、4、6、12

(3)练习:15的约数有哪几个?

(4)学生明确:

一个数的约数是有限的.其中最小的约数是1,最大的约数是它本身.

5、教学例3:2的倍数有哪些?

(1)引导学生合作学习,讨论、分析.

(2)汇报、板书:

2的倍数有:2、4、6、8、10……

(3)练习:2的倍数有哪些?

(4)学生明确:

一个数的倍数的个数是无限的,其中最小的倍数是它本身.

三、全课小结

这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

(板书课题:)

四、随堂练习

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,…的约数.

2、下面的数,哪些是60的约数,哪些是6的倍数?

3 4 12 16 24 60

教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

3、下面的说法对吗?为什么?

(1)1.8能被0.2除尽.( ) 1.8能被0.2整除.( )

1.8是0.2的倍数.( ) 1.8是0.2的9倍.( )

(2)若 a÷b=10,那么:

a一定是b的倍数.( ) a能被b整除.( )

b可能是a的约数.( ) a能被b除尽.( )

五、布置作业

1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

10 13 36

2、在下面的圈里填上适当的数.

六、板书设计

探究活动

动脑筋离课堂

游戏目的

1、巩固.

2、树立敢于探索的勇气和信心.

游戏规则

老师出示一张卡片,如果学生的学号数是卡片上的数的倍数,就可以走开.走的时候,必须先走到讲台前,大声说一句话,再走出教室.学生说的一句话,可以是“几是几的倍数”、“几是几的约数”或“几能被几整除’其中的任意一句.”

约 数 和 倍 数 篇8

作者:南京市溧水县和凤中心小学 吴存明

教学内容:苏教版教材第39-40页数的整除、约数和倍数、“练一练”,选用练习七的第4题和补充练习。

教学目标:

1、 知识目标:使学生理解整除的意义,理清“除尽”和“整除”的关系;理解和掌握约数和倍数的意义,了解约数和倍数相互依存的关系。

2、 能力目标:能判断一个数能否被第二个数整除,会根据约数和倍数的意义描述两个数之间的关系,培养学生根据信息进行分类、总结、概括的能力,培养学生会进行初步的观察、比较、分析、判断、概括的能力。

3、 情感目标:渗透初步的辩证唯物主义思想教育;并通过各种方式,激发学生的交流、对话的意识,积极探索的精神,从而树立学好数学的自信心。

教学重点:理解和掌握整除的意义、约数和倍数的意义。

教学难点:引导学生探索并理解约数和倍数之间的相互依存的关系。

教学过程(及设计意图):

一、引入新课。

1、 导入:同学们,今天吴老师想和同学们一起进一步学习有关除法算式的知识,好吗?你能在你的卡片上很快写出一个除法算式并贴上黑板吗?(学生写完后任意贴。)

[学生的学习材料是自己寻找的,而不是教师或书本给定的材料,它们来源于学生自己,并从学生的已有知识经验出发,找准知识的生长点。这样的学习,可以使学生一开始就处于积极状态,使学生对学习充满着兴趣,学生乐于继续学习下去,而无须教师强迫学生学习。]

2、 提出要求:你能根据一定的依据把这些除法算式来分一分类吗?并说明理由。(学生思考,同桌讨论。)

3、(学生代表上台进行分类)汇报交流:你们认为他这样分类有道理吗?为什么?其他同学是怎么分类的?

二、教学新课。

(一)教学整除。

1、观察特点。

请同学们仔细观察黑板上3组除法算式里的被除数、除数和商或结果,它们有什么不同的地方,每一组算式有什么特点?

[学生的分类,恰当地提供了学生学习新知的素材资源,使学生乐学、会学]

2、揭示概念。

①提问:第一组算式的被除数、除数、商有什么特点?(学生先思考后交流)

小结:被除数是整数、除数是整数,商是整数而且没有余数。

同时指出:当被除数、除数、商都是整数而且没有余数时,就是一个整除算式。

②追问:整除的算式有什么特点?你能再举出一些整除的算式吗?(学生举例)

设疑:整除的算式太多了,能想个办法把大家的整除算式概括成一个整除算式?

启发:请字母来帮帮忙。如果被除数用a表示,除数用b表示,商用c表示,可以怎么表示这个整除算式?

根据学生回答,板书:a÷b=c,追问:在这个整除算式中a、 b、 c 有什么特点?

③揭示:当a、 b、 c都是整数而且没有余数时就是一个整除的算式,我们就可以说: a能被b整除,b能整除a 。[板书:a ÷ b =c (b≠0) ]

举例说说。

[教师针对内容的特殊性,采用传统的教学方式,直接说明、学生模仿。不容忽视的是,有意义的接受性学习、记忆和模仿还是必要的。]

④追问:第二组、第三组算式为什么不是整除?那该叫什么呢?

引导学生发现并理清“除尽”和“整除”有什么关系?

如果用这样的图表示他们的关系,该怎样填写?

3、学会叙述。

①说明:按照a能被b整除的意义,在15÷3中(师指黑板上的第一组中一个),哪个数能被哪个数整除?还可以怎么说?

②谁来说说其他算式?

4、组织练习。

①口答“练一练”第1题。

提问:其他三个算式为什么不能说第一个数被第二个数整除?

请大家根据能整除的算式,说说每个算式里谁能被谁整除,谁能整除谁?

②下面四个数中谁能被谁整除?

2、 3、 6、12

[概念初步形成后,为了有效巩固,恰到好处增加了练习,练习题设计时,考虑到不同学生的发展,基础题后增加了开放题,这不仅激发了学生的学习兴趣,而且又加深了学生对整除的理解]

小结 、激励:(略)

(二)教学约数和倍数。

1、 过渡:如果a能被b整除,b能整除a,其实a和b还有着很大的关系。

并揭示课题:倍数和约数

2、 那到底什么是倍数和约数呢?指明学生读第39页的最后一段,

(学生看书后交流汇报。)

[针对该段内容的特点,教师提出问题,学生带着问题去自学,这样的学习,既体现了学生在课堂教学中的主体地位和作用,又培养了学生独立思考及自学能力。]

3、教师介绍说明:如果a能被b整除,b能整除a,那么我们就说a叫做b的倍数,b就叫做a的约数。[接前面板书: a是b的倍数 b是a的约数]

4、举例说明:例如,15÷3,因为15能被3整除,我们就说:15是3的倍数,3是15的约数。(领学生说一遍)

生填书上练习。

判断:能不能说15是倍数,3是约数?

强调:表示两个数之间的关系,所以一定要说谁是谁的倍数,谁是谁的约数。他们是相互依存的。如果光说谁是倍数,或谁是约数是不完整的。

5、 其他算式?这些算式能不能这样来说?必须在什么条件下?(整除)

6、 火眼金睛:你认为哪些是对的,哪些是错的,错在哪儿?

(1)42÷6=7,所以42是6的倍数, 6是42的约数

(2) 42÷6=7,所以42是倍数,6是约数

(3)42÷9=4┄┄6,所以42是9的倍数,9是42的约数

(4)4.2÷0.6=7 ,所以4.2是0.6的倍数,0.6是4.2的约数

(5)4.2÷0.6=7,所以4.2是0.6的7倍。

通过检测,你对倍数和约数有什么新的认识?

[通过以上的学习,学生明确了一个数是否是另一个数的倍数或约数时,必须是以整除为前提,约数和倍数是相互依存的概念,不能独立存在。此处的设计,在知识的重难点适时点拨,关键处启发,点有所通、导有所悟,突出了教学的重点。并且多次举正、反例,这样步步深入、层层推进,准确地把握了教学关键,最后突破难点。]

7、 认识“任何整数都是1的倍数,1是任何整数的约数。”

出示:□÷1=□ 想一想:□里可以填怎样的数,它就能被1整除?

8、 了解研究数的整除一般是指不包括0的自然数。

(学生自学第40页上面第二节)看了这一节,你了解到什么信息?

9、 练习:①“练一练”第2题。

②做练习七的第4题。

三、小结收获。

通过今天的学习,你有什么收获呢?什么是数的整除?约数和倍数的意义是什么?你还想提什么问题?

[让学生总结本节课学习的知识,并谈自己的收获,这个过程不仅是对本课内容回顾的必要环节,而且使学生加深了对知识的理解和掌握;诱发了学生的创造性思维,引发了学生的反思。学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习之乐,增强了学好数学的信心。]

四、练习拓展。

1、出示: 45 30 5 3 2

要求:选2个数字,用今天学到的知识来造个句。

2.填一填:看谁填得多!

①6÷( )=( ), 所以6是( )的倍数。

②( )÷1=( ) ( )是1的倍数,1是( )的约数。

③0÷( )=( ), ( )是( )的倍数,( )是( )的约数。

3、 猜一猜:

老师的年龄能被7整除,老师可能是多少岁?同时又是3的倍数?

4、 找朋友游戏:

游戏准备:学生按座位顺序依次编号成连续的自然数。(课前)

游戏规则:老师出示一个数,看你卡片上的数是否符合老师说的以下条件,符合的请你举起你的卡片,你就是老师的好朋友,其他同学要注意观察,并给予正确的评判。

(1) 我是5,谁是我的约数?

(2) 我是5,谁是我的倍数?

(3) 我是24,我找我的约数?

(4) 我是2,我找我的倍数?

(5) 我是1,我是谁的约数?

[练习题设计时,考虑到不同的学生要有不同的发展,即有层次,又有坡度,形式又有多样。即重视基本知识的训练,同时还将知识性、趣味性有机地结合。学生兴趣盎然,思维敏捷,体会到数学知识本身的无穷魅力,体验到学习成功的无限喜悦。通过比较、判断、游戏等开放性练习,既巩固了知识,又使全体学生不同程度得到了发展,更是为后继学习埋下了一个伏笔。]

[教后反思]

素质教育和新课程改革的重要着眼点是改变学生的学习方式。这必须要以学生的发展为本,突出学生的主体地位,要改变学生在原有的教育教学条件下所形成的那种偏重于记忆和理解、立足于接受教师知识传输的学习方式,帮助学生形成一种主动探究知识、并重视解决实际问题的积极学习方式,这是一种有利于终身学习、发展学习的方式。为了倡导这种学习方式,笔者在设计约数和倍数的意义这一课时,采用了以问题为中心,在教师的指导下,让学生以合作交流、讨论、自学等形式主动地去获取知识、应用知识、解决问题,从而使学生的创新精神和探索意识的发展有了切实的落脚点。

综观整堂课,尽管内容枯燥抽象,而且内容较少,我力求:教师灌输得不多,而师生的启发对话多,学生之间合作交流多,学生自主学习多,教师只是一个组织者、引导着和参与者,努力让学生真正成为学习的主人,不仅积极参与每一个教学环节,切身去感受学习数学的快乐,品尝了成功的喜悦,而且尽量使不同的学生得到不同的发展,满足学生求知、参与、成功、交流和自尊的需要。

约 数 和 倍 数 篇9

作者:南京市溧水县和凤中心小学 吴存明

教学内容:苏教版教材第39-40页数的整除、约数和倍数、“练一练”,选用练习七的第4题和补充练习。

教学目标:

1、 知识目标:使学生理解整除的意义,理清“除尽”和“整除”的关系;理解和掌握约数和倍数的意义,了解约数和倍数相互依存的关系。

2、 能力目标:能判断一个数能否被第二个数整除,会根据约数和倍数的意义描述两个数之间的关系,培养学生根据信息进行分类、总结、概括的能力,培养学生会进行初步的观察、比较、分析、判断、概括的能力。

3、 情感目标:渗透初步的辩证唯物主义思想教育;并通过各种方式,激发学生的交流、对话的意识,积极探索的精神,从而树立学好数学的自信心。

教学重点:理解和掌握整除的意义、约数和倍数的意义。

教学难点:引导学生探索并理解约数和倍数之间的相互依存的关系。

教学过程(及设计意图):

一、引入新课。

1、 导入:同学们,今天吴老师想和同学们一起进一步学习有关除法算式的知识,好吗?你能在你的卡片上很快写出一个除法算式并贴上黑板吗?(学生写完后任意贴。)

[学生的学习材料是自己寻找的,而不是教师或书本给定的材料,它们来源于学生自己,并从学生的已有知识经验出发,找准知识的生长点。这样的学习,可以使学生一开始就处于积极状态,使学生对学习充满着兴趣,学生乐于继续学习下去,而无须教师强迫学生学习。]

2、 提出要求:你能根据一定的依据把这些除法算式来分一分类吗?并说明理由。(学生思考,同桌讨论。)

3、(学生代表上台进行分类)汇报交流:你们认为他这样分类有道理吗?为什么?其他同学是怎么分类的?

二、教学新课。

(一)教学整除。

1、观察特点。

请同学们仔细观察黑板上3组除法算式里的被除数、除数和商或结果,它们有什么不同的地方,每一组算式有什么特点?

[学生的分类,恰当地提供了学生学习新知的素材资源,使学生乐学、会学]

2、揭示概念。

①提问:第一组算式的被除数、除数、商有什么特点?(学生先思考后交流)

小结:被除数是整数、除数是整数,商是整数而且没有余数。

同时指出:当被除数、除数、商都是整数而且没有余数时,就是一个整除算式。

②追问:整除的算式有什么特点?你能再举出一些整除的算式吗?(学生举例)

设疑:整除的算式太多了,能想个办法把大家的整除算式概括成一个整除算式?

启发:请字母来帮帮忙。如果被除数用a表示,除数用b表示,商用c表示,可以怎么表示这个整除算式?

根据学生回答,板书:a÷b=c,追问:在这个整除算式中a、 b、 c 有什么特点?

③揭示:当a、 b、 c都是整数而且没有余数时就是一个整除的算式,我们就可以说: a能被b整除,b能整除a 。[板书:a ÷ b =c (b≠0) ]

举例说说。

[教师针对内容的特殊性,采用传统的教学方式,直接说明、学生模仿。不容忽视的是,有意义的接受性学习、记忆和模仿还是必要的。]

④追问:第二组、第三组算式为什么不是整除?那该叫什么呢?

引导学生发现并理清“除尽”和“整除”有什么关系?

如果用这样的图表示他们的关系,该怎样填写?

3、学会叙述。

①说明:按照a能被b整除的意义,在15÷3中(师指黑板上的第一组中一个),哪个数能被哪个数整除?还可以怎么说?

②谁来说说其他算式?

4、组织练习。

①口答“练一练”第1题。

提问:其他三个算式为什么不能说第一个数被第二个数整除?

请大家根据能整除的算式,说说每个算式里谁能被谁整除,谁能整除谁?

②下面四个数中谁能被谁整除?

2、 3、 6、12

[概念初步形成后,为了有效巩固,恰到好处增加了练习,练习题设计时,考虑到不同学生的发展,基础题后增加了开放题,这不仅激发了学生的学习兴趣,而且又加深了学生对整除的理解]

小结 、激励:(略)

(二)教学约数和倍数。

1、 过渡:如果a能被b整除,b能整除a,其实a和b还有着很大的关系。

并揭示课题:倍数和约数

2、 那到底什么是倍数和约数呢?指明学生读第39页的最后一段,

(学生看书后交流汇报。)

[针对该段内容的特点,教师提出问题,学生带着问题去自学,这样的学习,既体现了学生在课堂教学中的主体地位和作用,又培养了学生独立思考及自学能力。]

3、教师介绍说明:如果a能被b整除,b能整除a,那么我们就说a叫做b的倍数,b就叫做a的约数。[接前面板书: a是b的倍数 b是a的约数]

4、举例说明:例如,15÷3,因为15能被3整除,我们就说:15是3的倍数,3是15的约数。(领学生说一遍)

生填书上练习。

判断:能不能说15是倍数,3是约数?

强调:表示两个数之间的关系,所以一定要说谁是谁的倍数,谁是谁的约数。他们是相互依存的。如果光说谁是倍数,或谁是约数是不完整的。

5、 其他算式?这些算式能不能这样来说?必须在什么条件下?(整除)

6、 火眼金睛:你认为哪些是对的,哪些是错的,错在哪儿?

(1)42÷6=7,所以42是6的倍数, 6是42的约数

(2) 42÷6=7,所以42是倍数,6是约数

(3)42÷9=4┄┄6,所以42是9的倍数,9是42的约数

(4)4.2÷0.6=7 ,所以4.2是0.6的倍数,0.6是4.2的约数

(5)4.2÷0.6=7,所以4.2是0.6的7倍。

通过检测,你对倍数和约数有什么新的认识?

[通过以上的学习,学生明确了一个数是否是另一个数的倍数或约数时,必须是以整除为前提,约数和倍数是相互依存的概念,不能独立存在。此处的设计,在知识的重难点适时点拨,关键处启发,点有所通、导有所悟,突出了教学的重点。并且多次举正、反例,这样步步深入、层层推进,准确地把握了教学关键,最后突破难点。]

7、 认识“任何整数都是1的倍数,1是任何整数的约数。”

出示:□÷1=□ 想一想:□里可以填怎样的数,它就能被1整除?

8、 了解研究数的整除一般是指不包括0的自然数。

(学生自学第40页上面第二节)看了这一节,你了解到什么信息?

9、 练习:①“练一练”第2题。

②做练习七的第4题。

三、小结收获。

通过今天的学习,你有什么收获呢?什么是数的整除?约数和倍数的意义是什么?你还想提什么问题?

[让学生总结本节课学习的知识,并谈自己的收获,这个过程不仅是对本课内容回顾的必要环节,而且使学生加深了对知识的理解和掌握;诱发了学生的创造性思维,引发了学生的反思。学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习之乐,增强了学好数学的信心。]

四、练习拓展。

1、出示: 45 30 5 3 2

要求:选2个数字,用今天学到的知识来造个句。

2.填一填:看谁填得多!

①6÷( )=( ), 所以6是( )的倍数。

②( )÷1=( ) ( )是1的倍数,1是( )的约数。

③0÷( )=( ), ( )是( )的倍数,( )是( )的约数。

3、 猜一猜:

老师的年龄能被7整除,老师可能是多少岁?同时又是3的倍数?

4、 找朋友游戏:

游戏准备:学生按座位顺序依次编号成连续的自然数。(课前)

游戏规则:老师出示一个数,看你卡片上的数是否符合老师说的以下条件,符合的请你举起你的卡片,你就是老师的好朋友,其他同学要注意观察,并给予正确的评判。

(1) 我是5,谁是我的约数?

(2) 我是5,谁是我的倍数?

(3) 我是24,我找我的约数?

(4) 我是2,我找我的倍数?

(5) 我是1,我是谁的约数?

[练习题设计时,考虑到不同的学生要有不同的发展,即有层次,又有坡度,形式又有多样。即重视基本知识的训练,同时还将知识性、趣味性有机地结合。学生兴趣盎然,思维敏捷,体会到数学知识本身的无穷魅力,体验到学习成功的无限喜悦。通过比较、判断、游戏等开放性练习,既巩固了知识,又使全体学生不同程度得到了发展,更是为后继学习埋下了一个伏笔。]

[教后反思]

素质教育和新课程改革的重要着眼点是改变学生的学习方式。这必须要以学生的发展为本,突出学生的主体地位,要改变学生在原有的教育教学条件下所形成的那种偏重于记忆和理解、立足于接受教师知识传输的学习方式,帮助学生形成一种主动探究知识、并重视解决实际问题的积极学习方式,这是一种有利于终身学习、发展学习的方式。为了倡导这种学习方式,笔者在设计约数和倍数的意义这一课时,采用了以问题为中心,在教师的指导下,让学生以合作交流、讨论、自学等形式主动地去获取知识、应用知识、解决问题,从而使学生的创新精神和探索意识的发展有了切实的落脚点。

综观整堂课,尽管内容枯燥抽象,而且内容较少,我力求:教师灌输得不多,而师生的启发对话多,学生之间合作交流多,学生自主学习多,教师只是一个组织者、引导着和参与者,努力让学生真正成为学习的主人,不仅积极参与每一个教学环节,切身去感受学习数学的快乐,品尝了成功的喜悦,而且尽量使不同的学生得到不同的发展,满足学生求知、参与、成功、交流和自尊的需要

约 数 和 倍 数 篇10

教学内容:九年义务教育六年制小学数学第十册第49页

教学目的:

1、进一步理解和掌握整除的意义。

2、理解、掌握约数和倍数的意义,知道约数、倍数的相互依

存关系,渗透辨证唯物主义思想教育。

3、让学生通过小组合作、交流,尝试解决问题;培养学生的

数学交流能力和合作能力。

4、激发学生的学习兴趣,通过自学、讨论等方式的学习,培

养学生自主学习能力。

教学准备:

1、两张卡片、2、多媒体演示课件

〔评析〕为了体现当今新的教育观,即在课堂教学中,不仅要使儿童掌握一定的数学基础知识和基本技能,同时还要有目的去培养学生的数学能力。所以制定的目标体系全面、恰当。

教学过程:

一、复习整理、进一步理解和掌握整除的意义

1、整除的含义

①让学生在小卡片上写一道除法算式

②黑板上展示学生的除法算式

〔评析〕学生的学习材料是自己寻找的,而不是教师或书本给定的材料,它们来源于学生自己,这样的学习,可以使学生一开始就处于积极状态,使学生对学习充满着兴趣,学生乐于继续学习下去,而无须教师强迫学生学习。

③教师提出问题:A、哪一道除法算式的被除数能被除数整除

B、在什么情况下,才可以说“一个数能被另一个数整除”

④让学生分小组合作、交流,解决以上两个问题

⑤学生交流完毕,每小组派代表汇报本小组研究成果

〔评析〕让学生合作、交流,尝试解决问题,这样的教学即给了学生一个人人参与、自主探索的机会,使学生理解和掌握了知识;又使学生在平等、自由、真诚悦纳的情意关系中学会了与人共处。

2、抽象概括整除的概念

①师:如果用字母a表示被除数,用字母b表示除数,在什么情况下,a能被b整除?

②生:略

③师:让学生完整地概括整除的意义

〔评析〕由于学生对整除的含义有了进一步的理解。所以通过学生讨论,师生对话,抽象概括出整除的概念,这样的教学,符合学生的认知规律,同时可培养学生的抽象概括能力。

3、巩固练习

①下面哪一组的第一个数能被第二个数整除

17和549和73.6和1.210和10

②下面四个数中谁能被谁整除

2、3、6、12

〔评析〕概念初步后,为了有效巩固,恰到好处增加了练习,练习题设计时,考虑到不同学生的发展,增加了开放题,这不仅激发了学生的学习兴趣,而且又加深了学生对整除的理解

二、新知教学,了解约数和倍数的意义

1、提出问题,看书自学

①在什么情况下,a是b的倍数,b是a的约数。

②约数和倍数中的数一般指什么数?不包括什么数?

③你能仿照书中的(例1)举一个例子,说明一个数是另一个数的倍数,另一个数是这个数的约数

2、学生自学,并回答问题及举例、说明理由。

〔评析〕教师提出问题,学生带着问题去自学,这样的学习,即体现了学生在课堂教学中的主体地位和作用,又培养了学生独立思考及自学能力。

3、明确约数和倍数的关系

根据实例提出问题:45能被15整除,能不能单独说45是倍数、15是约数,为什么?

生:略

师生共同小结:约数和倍数是相互依存的关系,不能单独地说一个数是倍数或约数。

〔评析〕通过以上的学习,学生明确了一个数是否是另一个数的倍数或约数时,必须是以整除为前提,约数和倍数是相互依存的概念,不能独立存在。突出了教学的重点,准确地把握了教学关键。

4、巩固练习

①下面每组数中,谁是谁的倍数?谁是谁的约数?

36和97和1445和451和100

②下列数中,谁是谁的倍数?谁又是谁的约数?

1、2、6、12

③游戏

规则:老师出示一个数,看你手中的卡片是否符合老师提出的条件,符合的请举起你的卡片。

a、我是12,12能整除谁?

你们是我的什么数?我又是你们的什么数?

b、我是19,谁是我的约数?

c、我是2,谁是我的倍数?

d、我是1,谁是我的倍数?(小结:1是所有自然数的约数)

e、让全体同学举起卡片,让具有数字6的同学指出自己的约数

〔评析〕练习题设计时,考虑到不同的学生要有不同的发展,即有层次,又有坡度,形式又有多样。即重视基本知识的训练,同时还将知识性、趣味性有机地结合。学生兴趣盎然,思维敏捷。通过练习,即巩固了知识,又使全体学生不同程度得到了发展

五、回顾反思,谈各人的收获。

师:今天我们研究了什么?又是怎样研究的?你有什么收获?

〔评析〕让学生总结本节课学习的方法,并谈自己的收获,这个过程不仅使学生明白了许多道理,而且使学生加深了对知识的理解和掌握;诱发了学生的创造性思维。学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习之乐,增强了学好数学的信心。

〔反思〕:素质教育的重要着眼点是改变学生的学习方式。实施素质教育就必须要以学生的发展为本,要改变学生在原有的教育教学条件下所形成的那种偏重于记忆和理解、立足于接受教师知识传输的学习方式,帮助学生形成一种主动探究知识、并重视解决实际问题的积极学习方式,这是一种有利于终身学习、发展学习的方式。为了倡导这种学习方式,使素质教育落到实处,笔者在设计约数和倍数的意义这一课时,采用了以问题为中心,在教师的指导下,让学生以合作交流、讨论、自学等形式主动地去获取知识、应用知识、解决问题,从而使学生的创新精神和实践能力的发展有了切实的落脚点。

综观整堂课,教师教得非常少,而学生讲得非常多,学生之间合作交流多,学生自主学习多,教师只是一个组织者和参与者,学生真正成为学习的主人,不仅积极参与每一个教学环节,切身感受了学习数学的快乐,品尝了成功的喜悦,而且不同的学生得到不同的发展,满足了学生求知、参与、成功、交流和自尊的需要。

约 数 和 倍 数 篇11

教学建议

教材分析

是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.

教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

学生学过后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.

教法建议

是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.

复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.

教学设计示例

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除 下载)

1、口算

6÷5 15÷3 23÷7

1.2÷0.3 24÷2 31÷3

2、观察算式和结果并将算式分类.

除 尽

除 不 尽

6÷5=1.2 15÷3=15

1.2÷0.3=4 24÷2=12

23÷7=3……2

31÷3=10……1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书: 15÷3=5 15能被3整除

5、分类

除 尽

除 不 尽

不能整除

整 除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3……2

31÷3=10……1

二、探究新知

(一)进一步理解“整除”的意义.

1、整除所需的条件.

(1)分析: 24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数 整数 整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书: b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和 3 36和12 1.2和 0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.( )

b.19能被3整除.( )

c.3.2能被0.4整除.( )

d.0能被5整除.( )

e.29能整除29.( )

4、“整除”与“除尽”的联系和区别.

讨论:综合以上所学知识讨论,“整除”和“除尽”有什么联系?又有什么区别?

(举例说明)

(二)约数、倍数的意义

1、类推约数、倍数的意义.

(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

(2)学生口述:

24能被2整除,我们就说,24是2的倍数,2是24的约数.

10能被5整除,我们就说,10是5的倍数,5是10的约数.

a能被b整除,我们就说a是b的倍数,b是a的约数.

(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

2、进一步理解约数、倍数的意义.

(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

(2)约数和倍数相互依存的关系.

学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

(3)反馈练习:

A、下面各组数中,有约数和倍数关系的有哪些?

16和2 140和20 45和15

33和6 4和24 72和8

B、判断下面说法是否正确.

a、8是2的倍数,2是8的约数.( )

b、6是倍数,3是约数.( )

c、30是5的倍数.( )

d、4是历的约数.( )

e、5是约数.( )

3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

4、教学例2 :12的约数有哪几个?

(1)引导学生合作学习,讨论分析.

(2)汇报、板书:

12的约数有:1、2、3、4、6、12

(3)练习:15的约数有哪几个?

(4)学生明确:

一个数的约数是有限的.其中最小的约数是1,最大的约数是它本身.

5、教学例3:2的倍数有哪些?

(1)引导学生合作学习,讨论、分析.

(2)汇报、板书:

2的倍数有:2、4、6、8、10……

(3)练习:2的倍数有哪些?

(4)学生明确:

一个数的倍数的个数是无限的,其中最小的倍数是它本身.

三、全课小结

这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

(板书课题:)

四、随堂练习

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,…的约数.

2、下面的数,哪些是60的约数,哪些是6的倍数?

3 4 12 16 24 60

教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

3、下面的说法对吗?为什么?

(1)1.8能被0.2除尽.( ) 1.8能被0.2整除.( )

1.8是0.2的倍数.( ) 1.8是0.2的9倍.( )

(2)若 a÷b=10,那么:

a一定是b的倍数.( ) a能被b整除.( )

b可能是a的约数.( ) a能被b除尽.( )

五、布置作业

1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

10 13 36

2、在下面的圈里填上适当的数.

六、板书设计

探究活动

动脑筋离课堂

游戏目的

1、巩固.

2、树立敢于探索的勇气和信心.

游戏规则

老师出示一张卡片,如果学生的学号数是卡片上的数的倍数,就可以走开.走的时候,必须先走到讲台前,大声说一句话,再走出教室.学生说的一句话,可以是“几是几的倍数”、“几是几的约数”或“几能被几整除’其中的任意一句.”

约 数 和 倍 数 篇12

教学目标

(一)理解并掌握求一个数的约数和倍数的方法。

(二)渗透集合思想,使学生会用集合图表示一个数的约数和倍数。

教学重点和难点

(一)求一个数的约数和倍数的方法。

(二)一个数的约数的个数是有限的,一个数的倍数的个数是无限的。教学用具

投影片。

教学过程设计

(一)复习准备

口答下面各题。(投影片)

1.填空。

如果整数a能被整数b整除(b≠0),整数a就是整数b的________,整数b就是整数a的________。

2.说出下面各组数中谁是谁的约数,谁是谁的倍数:

125和 25 72和9 57和 19

3.判断下面的说法对不对,并说明理由。

(1)15是倍数,5是约数; ( )

(2)6是3的倍数,是24的约数; ( )

(3)4是12的约数,也是3.6的约数; ( )

(4) 48是12和 6的倍数。 ( )

教师:我们已经学习了约数和倍数,了解了它们相互依存的关系,今天来继续学习如何求一个数的约数和倍数。(板书课题:求一个数的约数和倍数。)

(二)学习新课

1.求一个数的约数的方法。

(1)(板书)例2 12的约数有哪几个?

教师:想一想,符合什么条件的数一定是 12的约数?(能整除 12的数。)学生口答老师板书:

12÷1=12 12÷12=1

12÷2=6 12÷6=2

12÷3=4 12÷4=3

12的约数有:1,2,3,4,6,12。教师:如果用集合图表示:

教师:观察板书列式,看一看12的这些约数有什么特点?

学生口答后教师概括:从整除算式中可以看出,一个数的约数是成对的。(整除算式中的除数与商就是一对。)

(2)练习。找出下面各数的约数。学生在本上写,老师巡视,请四位同学板书。

集体订正后,请学生说一说是怎样找出这些约数的?(从较小的自然数开始,一对一对地找。)

教师:观察上面几个数的约数,讨论下面几个问题:

①一个数的约数的个数有没有限?

②一个数的约数的个数有没有规律?

学生讨论后教师概括:

一个数的约数是有限个。一个数的约数个数,一般为偶数个,如果是平方数,约数的个数为奇数个。一个数的最小约数都是1,最大约数是这个数本身。

(口答)说出下面各数的全部约数:

8,14,25,39,45。

老师:找一个数的约数,可以用能整除这个数的数去除,除数和商就是它的一对约数。

2.找一个数倍数的方法。

(1)(板书)例3 2的倍数有哪些?

学生口答,老师板书:

2×1=2 2×2=4 2×3=6

问:能写出多少个2的倍数?有没有2的最大倍数?

学生回答出能写出无数个2的倍数后,板书在算式后面补出省略号,说明表示无限个。

板书:2的倍数有2,4,6,8,…

用集合图表示:

问:集合圈里为什么要写上省略号?

(2)练习:填空。(请四位同学板书,其余同学填本,集体订正。)

教师:第(2)个集合圈里为什么不能写省略号?

教师:观察集合圈里的倍数有什么特点?发现了什么规律?

学生口答后老师概括:一个数的最小倍数是它本身,而没有最大的倍数;一个数的倍数个数无限。

老师:能说一说找一个数倍数的方法吗?(用自然数,1,2,3,…分别去乘一个数,就可以求出这个数的倍数。)

(三)巩固反馈

1.在下面的整数中圈出3的倍数。(投影)

2.在下面的集合圈里填上适合的数。

3.填空。

13的最小倍数是( ),它的最大约数是( )。( )既是28的倍数,又是28的约数。

4.(口答)下面集合圈中,阴影部分应该填多少?为什么?

(四)课堂总结与课后练习

1.求一个数约数的方法。求一个数倍数的方法。

2.一个数的约数个数有限而倍数无限,它的最大约数和最小倍数是它本身。

3.课后作业:课本P52:4,5,6。

思考课本P52:7。

课堂教学设计说明

本节内容是在学生已掌握了整除、约数、倍数等概念的基础上进行的。因为约数、倍数是建立在整除基础上的,所以利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对地找。在学生会找约数的基础上,通过一组练习和观察,给学生创设一个研讨,发现约数特点的情景。学生掌握了约数的特点,更能提高找约数的能力。找倍数的方法学生很易理解和掌握,在练习中设计了集合圈中加省略号和不加省略是两种题,让学生通过对比讨论,加深一个数的倍数是无限的这个特点的认识。

新课教学分两大部分。

第一部分教学求一个数约数的方法。分两层。找一个数约数的方法,会用集合图表示一个数的约数;在练习基础上让学生学会归纳求约数的方法,并发现一个数的约数的特点。

第二部分教学求一个数的倍数的方法。也分两层。让学生掌握找一个数倍数的方法;归纳找倍数的方法以及倍数的特点。

板书设计

约 数 和 倍 数 篇13

教学目标

(一)理解并掌握的方法。

(二)渗透集合思想,使学生会用集合图表示一个数的约数和倍数。

教学重点和难点

(一)的方法。

(二)一个数的约数的个数是有限的,一个数的倍数的个数是无限的。教学用具

投影片。

教学过程设计

(一)复习准备

口答下面各题。(投影片)

1.填空。

如果整数a能被整数b整除(b≠0),整数a就是整数b的________,整数b就是整数a的________。

2.说出下面各组数中谁是谁的约数,谁是谁的倍数:

125和 25 72和9 57和 19

3.判断下面的说法对不对,并说明理由。

(1)15是倍数,5是约数; ( )

(2)6是3的倍数,是24的约数; ( )

(3)4是12的约数,也是3.6的约数; ( )

(4) 48是12和 6的倍数。 ( )

教师:我们已经学习了约数和倍数,了解了它们相互依存的关系,今天来继续学习如何。(板书课题:。)

(二)学习新课

1.求一个数的约数的方法。

(1)(板书)例2 12的约数有哪几个?

教师:想一想,符合什么条件的数一定是 12的约数?(能整除 12的数。)学生口答老师板书:

12÷1=12 12÷12=1

12÷2=6 12÷6=2

12÷3=4 12÷4=3

12的约数有:1,2,3,4,6,12。教师:如果用集合图表示:

教师:观察板书列式,看一看12的这些约数有什么特点?

学生口答后教师概括:从整除算式中可以看出,一个数的约数是成对的。(整除算式中的除数与商就是一对。)

(2)练习。找出下面各数的约数。学生在本上写,老师巡视,请四位同学板书。

集体订正后,请学生说一说是怎样找出这些约数的?(从较小的自然数开始,一对一对地找。)

教师:观察上面几个数的约数,讨论下面几个问题:

①一个数的约数的个数有没有限?

②一个数的约数的个数有没有规律?

学生讨论后教师概括:

一个数的约数是有限个。一个数的约数个数,一般为偶数个,如果是平方数,约数的个数为奇数个。一个数的最小约数都是1,最大约数是这个数本身。

(口答)说出下面各数的全部约数:

8,14,25,39,45。

老师:找一个数的约数,可以用能整除这个数的数去除,除数和商就是它的一对约数。

2.找一个数倍数的方法。

(1)(板书)例3 2的倍数有哪些?

学生口答,老师板书:

2×1=2 2×2=4 2×3=6

问:能写出多少个2的倍数?有没有2的最大倍数?

学生回答出能写出无数个2的倍数后,板书在算式后面补出省略号,说明表示无限个。

板书:2的倍数有2,4,6,8,…

用集合图表示:

问:集合圈里为什么要写上省略号?

(2)练习:填空。(请四位同学板书,其余同学填本,集体订正。)

教师:第(2)个集合圈里为什么不能写省略号?

教师:观察集合圈里的倍数有什么特点?发现了什么规律?

学生口答后老师概括:一个数的最小倍数是它本身,而没有最大的倍数;一个数的倍数个数无限。

老师:能说一说找一个数倍数的方法吗?(用自然数,1,2,3,…分别去乘一个数,就可以求出这个数的倍数。)

(三)巩固反馈

1.在下面的整数中圈出3的倍数。(投影)

2.在下面的集合圈里填上适合的数。

3.填空。

13的最小倍数是( ),它的最大约数是( )。( )既是28的倍数,又是28的约数。

4.(口答)下面集合圈中,阴影部分应该填多少?为什么?

(四)课堂总结与课后练习

1.求一个数约数的方法。求一个数倍数的方法。

2.一个数的约数个数有限而倍数无限,它的最大约数和最小倍数是它本身。

3.课后作业:课本P52:4,5,6。

思考课本P52:7。

课堂教学设计说明

本节内容是在学生已掌握了整除、约数、倍数等概念的基础上进行的。因为约数、倍数是建立在整除基础上的,所以利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对地找。在学生会找约数的基础上,通过一组练习和观察,给学生创设一个研讨,发现约数特点的情景。学生掌握了约数的特点,更能提高找约数的能力。找倍数的方法学生很易理解和掌握,在练习中设计了集合圈中加省略号和不加省略是两种题,让学生通过对比讨论,加深一个数的倍数是无限的这个特点的认识。

新课教学分两大部分。

第一部分教学求一个数约数的方法。分两层。找一个数约数的方法,会用集合图表示一个数的约数;在练习基础上让学生学会归纳求约数的方法,并发现一个数的约数的特点。

第二部分教学求一个数的倍数的方法。也分两层。让学生掌握找一个数倍数的方法;归纳找倍数的方法以及倍数的特点。

板书设计

约 数 和 倍 数 篇14

1、让学生大胆地、自由地想、说、做。

语言是思维的外壳。天真烂漫的孩子是怎么想的,只有通过他们的说才能反映出来。为此,在进行整除意义的教学时,首先让学生独立研究(即自主探究),通过自己动手分一分、想一想,然后再小组合作交流彼此的想法、分法,求同存异,最后通过争论得出正确结论。这样的方法正符合新课程标准所倡导的学习方法。

2、让学生在游戏中体会、感悟。

玩,是孩子的天性,让孩子在玩耍中;轻松地获取知识是极好的学习途径。因此,在约数和倍数的概念建立之后,组织学生做游戏,在游戏中找具体数的倍数和约数,从中体会、感悟知识的内涵与外延。这正符合新课程标准所要求的重视学生的情感体验,重视学生的体会、感悟。同时也使学生感受到了数学的趣味性和无穷魅力。

3、置身于学生当中,做学生的一员,增强与学生的亲和力。

古人云,亲其师则信其道。我觉得当今的教育也是如此。老师只有不断增强与学生的亲和力,学生才能乐意跟着学习。为此,在学习约数和倍数之前,我组织学生编号时,把自己也编入学生之列,并与学生共同游戏,置身于学生当中,使学生感受到教师就是他们的朋友,就是他们中的一员,这也正体现了师生平等的新理念。

约 数 和 倍 数 篇15

教学内容:苏教版九年义务教育六年制小学数学第十册第39-40页“约数和倍数”。

教学目标:

1.知识目标:使学生理解整除的意义,理清“除尽”和“整除”的关系;理解和掌握约数和倍数的意义,了解约数和倍数相互依存的关系。

2.能力目标:能判断一个数能否被另一个数整除,会根据约数和倍数的意义描述两个数之间的关系,培养学生根据信息进行分类、总结、概括的能力,培养学生会进行初步的观察、比较、分析、判断、概括的能力。

3.情感目标:渗透初步的辩证唯物主义思想教育;并通过各种方式,激发学生的交流、对话的意识,积极探索的精神,从而树立学好数学的自信心。

教学重点:理解和掌握整除的意义、约数和倍数的意义。

教学难点:引导学生探索并理解约数和倍数之间的相互依存的关系。

教学过程:

一、创设情境

1.交流生活中的数学信息

师:(拿着数学课本)问这是一本?

生:数学课本

师:“数学”就是关于“数”的学问,我们的身边有“数”吗?

生:有

师:你能举几个例子吗?

生1:我有7本书。

生2:我有3个好朋友。

生3:我们班里有26名女同学。

……

2.根据信息组成应用题。

师:今天老师也带来了一些数学信息,让我们一起来看一下吧!(课件出示)

A组 B组

(1)35张圣诞贺卡 (8)共用去6.6元

(2)每本练习本2.2元 (9)平均分给11个同学

(3)有5个同学给灾区捐款 (10)共捐了15.5元

(4)小红每天读2页课外书 (11)已经读了24页

(5)买了4枝同样的钢笔 (12)共用布15米

(6)小东参加三门考试 (13)共考了273分

(7)做7套同样的校服 (14)小明带32元钱买钢笔

师:请根据你们的生活经验,选择两条相关的信息组成一道简单的应用题,并列式计算。(学生伴随轻音乐读题思考)同桌的同学可以互相说一说。

师:谁来说说看,你先择的是哪两条,求的是什么?怎么列式?

生1:我选(2)和(8)求的是可买多少本?列式为6.6÷2.2=3

生2:我选的是(1)和(9)求的是平均每人得到几张贺卡,列式为35÷11=3……2

生3:……

共得到7道算式,分别是:6.6÷2.2=3 35÷11=3……2 15.5÷5=3.1

24÷2=12 32÷4=8 273÷3=91 15÷7=2……1

[学生的学习材料来源于学生自己,并从学生的已有知识经验出发,找准知识的生长点。这样的学习,可以使学生一开始就处于积极状态,使学生对学习充满着兴趣,学生乐于继续学习下去,而无须教师强迫学生学习。]

二、自主探究

师:请同学们观察以上这些算式,并根据算式的特点分类,分好后小组交流。

(学生自己分好类后小组交流)

师:哪位同学来说说你是怎么分类的?

师:为了方便,老师给它们加上序号。(分别给7道算式加上序号)

①6.6÷2.2=3 ②35÷11=3……2 ③15.5÷5=3.1

④24÷2=12 ⑤32÷4=8 ⑥273÷3=91 ⑦15÷7=2……1

生1:我将②和⑦分为一类,①为一类,③④⑤⑥分为一类,第一类是有余数的,第二类的被除数和除数都是小数,第三类的除数都是整数。

生2:我也将②和⑦分为一类,①③④⑤⑥分为一类。第一类是有余数的,第二类是没有余数的。

生3……

师:从同学们的分类中可以看出:分类的标准不同所得的答案也不同。那我们先选择其中的一种分类来研究。(课件出示)

师:(先择②和⑦分为一类,①③④⑤⑥分为一类)这位同学他是按是不是除尽来分类的,那什么叫除尽?什么又叫除不尽呢?

生:商是有限小数的就是除尽,商是无限小数的就是除不尽。

[学生通过小组讨论、观察、分析、比较和分类,在头脑中建立了小数除法、有余数的整数除法和没有余数的整数除法三种类型的除法的表象。学生的分类,恰当地提供了学生学习新知的素材资源,使学生乐学、会学。]

三、归纳特征

师:我们再来仔细观察这些除尽的算式(①6.6÷2.2=3 ③15.5÷5=3.1④24÷2=12 ⑤32÷4=8 ⑥273÷3=91) ,看看这些算式还能不能再分分类,你准备怎么分?

生:①6.6÷2.2=3和 ③15.5÷5=3.1分为一类,因为这里面有小数, ④24÷2=12、 ⑤32÷4=8和 ⑥273÷3=91这三个算式分为一类,因为这三个算式中的被除数、除数和商都是整数,而且没有余数。

师:我们可以将(学生分类后)指着整除的一组算式:象这样被除数、除数和商都是整除而且没有余数我们就称它为“整除”(板书“整除”)(课件出示)

师:那我们仔细地观察整除和除尽有什么关系呢?

生:除尽的范围比整除的大。

师:如果我们用一个大圈来表示除尽,那整除就是其中的一个小圈。(课件出示集合图)

师:你还能再举出一些整除的算式吗?

生1:4÷2=2。

生2:30÷5=6

生3:280÷70=4。

……

师:整除的算式实在是太多了(在整除的小圈后加……)那我们能不能用一个含有字母的式子来概括整除算式呢?

生:用a÷b=c(板书)

师:是不是要加个什么条件呢?

生:b≠0(板书),因为b=0,除法就无意义了。

师:如果a、b、c都是整数(板书),且b≠0,那我们就说a能被b整除,或b能整除a。

[教师先从圈中拿去除不尽的除法算式,再将这些能除尽的算式进行分类,揭示出整除的算式。这样以集合圈的形式,渗透整除和除尽的关系。在学生找出了整除算式的特征后,教师请学生再举一些这样的算式,让学生再次感悟和应用整除算式的特征,并体会象这样的算式有无数个。并通过用一个含有字母的算式来抽象概括,既让学生感悟到用字母表示数的简便,又便于学生理解和掌握数的整除的概念。]

师:如15÷3=5,我们就说15能被3整除,或3能整除15。谁来说说这几道的(指着黑板上的几道整除算式)?

生1:24÷2=12我们就说24能被2整除,或2能整除24。

生2:32÷4=8我们就说32能被4整除,或4能整除32。

生3:273÷3=91我们就说273能被3整除,或3能整除273。

师:我们一起看看书P49的练一练1。(课件出示)

生答……

[教师针对内容的特殊性,采用传统的教学方式,直接说明、学生模仿。不容忽视的是,有意义的接受性学习、记忆和模仿还是必要的。在教师揭示了数的整除的概念后,通过让学生跟着老师一起说、请学生说和学生自己任选两个算式说给同桌听,到一起其说等多种方式让学生通过读来区分两种说法的区别,自我感悟。]

四、感悟关系

约 数 和 倍 数 篇16

教学建议

教材分析

是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.

教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

学生学过后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.

教法建议

是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.

复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.

教学设计示例

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除 下载)

1、口算

6÷5 15÷3 23÷7

1.2÷0.3 24÷2 31÷3

2、观察算式和结果并将算式分类.

除 尽

除 不 尽

6÷5=1.2 15÷3=15

1.2÷0.3=4 24÷2=12

23÷7=3……2

31÷3=10……1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书: 15÷3=5 15能被3整除

5、分类

除 尽

除 不 尽

不能整除

整 除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3……2

31÷3=10……1

二、探究新知

(一)进一步理解“整除”的意义.

1、整除所需的条件.

(1)分析: 24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数 整数 整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书: b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和 3 36和12 1.2和 0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.( )

b.19能被3整除.( )

c.3.2能被0.4整除.( )

d.0能被5整除.( )

e.29能整除29.( )

4、“整除”与“除尽”的联系和区别.

讨论:综合以上所学知识讨论,“整除”和“除尽”有什么联系?又有什么区别?

(举例说明)

(二)约数、倍数的意义

1、类推约数、倍数的意义.

(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

(2)学生口述:

24能被2整除,我们就说,24是2的倍数,2是24的约数.

10能被5整除,我们就说,10是5的倍数,5是10的约数.

a能被b整除,我们就说a是b的倍数,b是a的约数.

(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

2、进一步理解约数、倍数的意义.

(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

(2)约数和倍数相互依存的关系.

学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

(3)反馈练习:

A、下面各组数中,有约数和倍数关系的有哪些?

16和2 140和20 45和15

33和6 4和24 72和8

B、判断下面说法是否正确.

a、8是2的倍数,2是8的约数.( )

b、6是倍数,3是约数.( )

c、30是5的倍数.( )

d、4是历的约数.( )

e、5是约数.( )

3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

4、教学例2 :12的约数有哪几个?

(1)引导学生合作学习,讨论分析.

(2)汇报、板书:

12的约数有:1、2、3、4、6、12

(3)练习:15的约数有哪几个?

(4)学生明确:

一个数的约数是有限的.其中最小的约数是1,最大的约数是它本身.

5、教学例3:2的倍数有哪些?

(1)引导学生合作学习,讨论、分析.

(2)汇报、板书:

2的倍数有:2、4、6、8、10……

(3)练习:2的倍数有哪些?

(4)学生明确:

一个数的倍数的个数是无限的,其中最小的倍数是它本身.

三、全课小结

这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

(板书课题:)

四、随堂练习

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,…的约数.

2、下面的数,哪些是60的约数,哪些是6的倍数?

3 4 12 16 24 60

教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

3、下面的说法对吗?为什么?

(1)1.8能被0.2除尽.( ) 1.8能被0.2整除.( )

1.8是0.2的倍数.( ) 1.8是0.2的9倍.( )

(2)若 a÷b=10,那么:

a一定是b的倍数.( ) a能被b整除.( )

b可能是a的约数.( ) a能被b除尽.( )

五、布置作业

1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

10 13 36

2、在下面的圈里填上适当的数.

六、板书设计

探究活动

动脑筋离课堂

游戏目的

1、巩固.

2、树立敢于探索的勇气和信心.

游戏规则

老师出示一张卡片,如果学生的学号数是卡片上的数的倍数,就可以走开.走的时候,必须先走到讲台前,大声说一句话,再走出教室.学生说的一句话,可以是“几是几的倍数”、“几是几的约数”或“几能被几整除’其中的任意一句.”

约 数 和 倍 数 篇17

数学教学要从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,引导学生在理解的基础上掌握知识,给学生充分探究合作的机会,让他们体会数学来源于生活实际,增强学习兴趣,这是新的课程标准的要求。我在教学中就遵循了新课标的理念,从学生生活实际引入,为学生创设了探索新知识的条件,让全体学生都参与到了获取新知识的过程中去。并放手让学生自主去探究、发现、总结求一个数的约数和倍数的方法,不仅让学生们很好的掌握了方法,而且很好的培养了他们的多种能力和意识。

在以后的教学中,有两点还需注意:一是数学符号的最简化。如本节课中使用的省略号,在语文中省略号是六个点,而数学中的省略号是三个点。二是注意训练教师在教学中的教育机智。本节课中有几个地方,如教师注意教育机智,抓住学生问题深入下去,可能会让学生对知识理解更加深刻,思维得到更好的训练,从而给整堂课增光添彩。

约 数 和 倍 数(通用17篇)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

带你看艺考
艺考信息时光机

南京师范大学2023年艺术类校考(播音与主持艺术、舞蹈学)成绩发布以及合格考生公示的公告

南京师范大学2023年艺术类校考(播音与主持艺术、舞蹈学)成绩发布以及合格考生公示的公告
南京师范大学2023年艺术类校考成绩
艺术类专业成绩查询南京师范大学2023年艺术类校考成绩2023/3/25

西安航空学院关于2023年航空服务艺术与管理专业课考试成绩查询及体检安排的通知!

2023年艺术类专业成绩查询,西安航空学院关于2023年航空服务艺术与管理专业课考试成绩查询及体检安排的通知!
西安航空学院2023年艺术类专业成绩查询
艺术类专业成绩查询西安航空学院2023年艺术类专业成绩查询2023/3/25

黄冈师范学院2023年艺术类专业招生简章

2023年,黄冈师范学院2023年艺术类专业招生简章
2023年黄冈师范学院艺术类专业招生简章
艺术类招生简章2023年黄冈师范学院艺术类专业招生简章2023/3/25

北京政法职业学院2023年自主招生考生报考流程

北京政法职业学院2023年自主招生考生报考流程
北京政法职业学院2023年自主招生考生报考流程
自主招生信息北京政法职业学院2023年自主招生考生报考流程2023/3/25

江西航空职业技术学院2023年高职单招线上模拟测试

江西航空职业技术学院2023年高职单招线上模拟测试
江西航空职业技术学院2023年高职单招线上模拟测试
单独招生简章江西航空职业技术学院2023年高职单招线上模拟测试2023/3/25

锡林郭勒职业学院2023年单独考试招生第一批考生成绩公示

锡林郭勒职业学院2023年单独考试招生第一批考生成绩公示
锡林郭勒职业学院2023年单独考试招生第一批考生成绩公示
单独招生成绩查询锡林郭勒职业学院2023年单独考试招生第一批考生成绩公示2023/3/25

安徽艺术学院2023年面向中职毕业生对口招生章程

安徽艺术学院2023年面向中职毕业生对口招生章程
安徽艺术学院2023年面向中职毕业生对口招生章程
单独招生简章安徽艺术学院2023年面向中职毕业生对口招生章程2023/3/25

2023年昆明冶金高等专科学校单独招生三校生文化素质测网络远程考试考生操作指南

2023年昆明冶金高等专科学校单独招生三校生文化素质测网络远程考试考生操作指南
2023年昆明冶金高等专科学校单独招生三校生文化素质测网络远程考试考生操作指南
单独招生简章2023年昆明冶金高等专科学校单独招生三校生文化素质测网络远程考试考生操作指南2023/3/25

关于公示2023年华南理工大学高水平运动队统考项目考生名单的通知

关于公示2023年华南理工大学高水平运动队统考项目考生名单的通知
关于公示2023年华南理工大学高水平运动队统考项目考生名单的通知
高水平运动队招生信息关于公示2023年华南理工大学高水平运动队统考项目考生名单的通知2023/3/25

唐山职业技术学院关于2023年高职单招申请免试入学合格考生

唐山职业技术学院关于2023年高职单招申请免试入学合格考生
唐山职业技术学院关于2023年高职单招申请免试入学合格考生
单独招生简章唐山职业技术学院关于2023年高职单招申请免试入学合格考生2023/3/25

北京京北职业技术学院职业技术学院2023年自主招生简章

北京京北职业技术学院职业技术学院2023年自主招生简章
北京京北职业技术学院职业技术学院2023年自主招生简章
自主招生信息北京京北职业技术学院职业技术学院2023年自主招生简章2023/3/25

云南商务职业学院2023年单独招生考试大纲

云南商务职业学院2023年单独招生考试大纲
云南商务职业学院2023年单独招生考试大纲
单独招生简章云南商务职业学院2023年单独招生考试大纲2023/3/25

朔州师范高等专科学校2023年单独招生章程

朔州师范高等专科学校2023年单独招生章程
朔州师范高等专科学校2023年单独招生章程
单独招生简章朔州师范高等专科学校2023年单独招生章程2023/3/25

天津工艺美术职业学院2023年招生简章

天津工艺美术职业学院2023年招生简章
天津工艺美术职业学院2023年招生简章
单独招生简章天津工艺美术职业学院2023年招生简章2023/3/25

山西水利职业技术学院2023年单独招生方案

山西水利职业技术学院2023年单独招生方案
山西水利职业技术学院2023年单独招生方案
单独招生简章山西水利职业技术学院2023年单独招生方案2023/3/25

山东劳动职业技术学院2023年高职单招成绩查询

山东劳动职业技术学院2023年高职单招、综合评价成绩查询
山东劳动职业技术学院2023年高职单招、综合评价成绩查询
单独招生成绩查询山东劳动职业技术学院2023年高职单招、综合评价成绩查询2023/3/25

山东劳动职业技术学院2023年综合评价成绩查询

山东劳动职业技术学院2023年高职单招、综合评价成绩查询
山东劳动职业技术学院2023年高职单招、综合评价成绩查询
综合评价山东劳动职业技术学院2023年高职单招、综合评价成绩查询2023/3/25

天津工业职业学院2023年天津市高职分类考试招生计划表(面向高中毕业生)

天津工业职业学院2023年天津市高职分类考试招生计划表(面向高中毕业生)
天津工业职业学院2023年天津市高职分类考试招生计划表(面向高中毕业生)
单独招生简章天津工业职业学院2023年天津市高职分类考试招生计划表(面向高中毕业生)2023/3/25

绵阳飞行职业学院2023年高职单独招生考试公告

绵阳飞行职业学院2023年高职单独招生考试公告
绵阳飞行职业学院2023年高职单独招生考试公告
单独招生报名考试绵阳飞行职业学院2023年高职单独招生考试公告2023/3/25

亳州职业技术学院2023年分类考试招生时间安排

亳州职业技术学院2023年分类考试招生时间安排
亳州职业技术学院2023年分类考试招生时间安排
单独招生报名考试亳州职业技术学院2023年分类考试招生时间安排2023/3/25
没有更多了?去看看其它艺考内容吧

艺考热搜

艺考数据
艺考资源站

  • 艺考分数线
  • 艺考简章