初三数学二次函数重点知识点

中考数学
2022/2/6
数学的函数是比较重要的部分,下面小编就为大家整理一下初三数学二次函数重点知识点,仅供参考。
1.一般式:y=ax2+bx+c(a,b,c为常数,a≠0),如:y=2x2+3x+4;
2.顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0),如:y=2(x-5)2+3;
3.两根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是抛物线与x轴两交点的横坐标),如:y=2(x-1)(x+3).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b2-4ac≥0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化。
二次函数的性质特别地,二次函数(以下称函数)y=ax+bx+c(a≠0)。
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0(a≠0)
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
二次函数的值域顶点坐标(-b/2a,(4αc-b)/4α)
二次函数的基本形式为y=ax+bx+c(a≠0)
a>0时,抛物线开口向上,图象在顶点上方,所以值域y≥(4ac-b)/4a,即[(4ac-b)/4a,+∞)。
a<0时,抛物线开口向下,函数的值域是(-∞,(4ac-b)/4a]
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax+c(a≠0)。
二次函数的平移规律口诀加左减右,加上减下。
意思就是当二次函数写成下面这个样子时:
y=a(x+b)+c,只要将y=ax的函数图像按以下规律平移。
0时,图像向左平移b个单位(加左)。
(2)b<0时,图像向右平移b个单位(减右)。
0时,图像向上平移c个单位(加上)。
(4)c<0时,图像向下平移c个单位(减下)。
二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax+bx+c。
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0。
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到。
当h<0时,则向左平行移动|h|个单位得到。
0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。
0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象。
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。
因此,研究抛物线y=ax+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。
0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a)。
0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。
4.抛物线y=ax+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c)。
0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x|。
当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。
0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a。
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。