西安电子科技大学2023研究生考试大纲:601数学分析

【 1元抢新大纲尊享训练营!!】

新大纲训练营,强化解题技巧,训练做题能力,1元升级尊享班,3天体验做题能力升级

西安电子科技大学601数学分析2023年硕士研究生招生考试大纲已出,为帮助考生明确考试复习范围和有关要求,特制定出本考试大纲。本考试大纲适用于报考西安电子科技大学2023考研学子,一起关注。

601 数学分析 考试大纲

(研招考试主要考察考生分析问题与解决问题的能力,大纲所列内容为考生需掌握的基本内容,仅供复习参考使用,考试范围不限于此)

一、考试总体要求与考试要点

1.考试对象

考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学数学与统计学院硕士研究生的考生。

2.考试总体要求

测试考生对数学分析的基本内容的理解、掌握和熟练程度。要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。

3.考试内容和要点

(一)实数集与函数

1、实数:实数的概念;实数的性质;绝对值不等式。

2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。

3、函数的几何特性:单调性;奇偶性;周期性。

要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。

(二)数列极限

1、数列极限的概念(e- N 定义)。

2、数列极限的性质:唯一性;有界性;保号性。

3、数列极限存在的条件:单调有界准则;两边夹法则。

要求:理解和掌握数列极限的概念,会使用e- N 语言证明数列的极限;掌握数列极限的基本性质、运算法则以及数列极限的存在条件(单调有界原理和两边夹法则),并能运用它们求数列极限;了解无穷小量和无穷大量的概念性质和运算法则,会比较无穷小量与无穷大量的阶。

(三)函数极限

1、函数极限的概念(e-d定义、e- X 定义);单侧极限的概念。

2、函数极限的性质:唯一性;局部有界性;局部保号性。

3、函数极限存在的条件:海涅归结原则。

4、两个重要极限。

要求:理解和掌握函数极限的概念,会使用e-d语言以及e- X 语言证明函数的极限;掌握函数极限的基本性质、运算法则,会使用海涅归结原理证明函数极限不存在;掌握两个重要极限并能利用它们来求极限;了解单侧极限的概念以及求法。

(四)函数连续

1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。

2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。

3、初等函数的连续性。

要求:理解与掌握函数连续性、一致连续性的定义以及它们的区别和联系,会证明具体函数的连续以及一致连续性;理解与掌握函数间断点的分类;能正确叙述并简单应用闭区间上连续函数的性质;了解反函数、复合函数以及初等函数的连续性。

(五)实数系六大基本定理及应用

1、实数系六大基本定理:确界存在定理;单调有界定理;闭区间套定理;致密性定理; 柯西收敛准则;有限覆盖定理。

2、闭区间上连续函数性质的证明:有界性定理的证明;最值性定理的证明;介值性定理的证明;一致连续性定理的证明。

要求:理解和掌握上、下确界的定义,会求具体数集的上、下确界;理解和掌握闭区间上连续函数性质及其证明;能正确叙述实数系六大基本定理的内容及其证明思想,会使用开覆盖以及二分法构造区间套进行简单证明。

(六)导数与微分

1、导数概念:导数的定义;单侧导数;导数的几何意义。

2、求导法则:初等函数的求导;反函数的求导;复合函数的求导;隐函数的求导;参数方程的求导;导数的运算(四则运算)。

3、微分:微分的定义;微分的运算法则;微分的应用。

4、高阶导数与高阶微分。

要求:能熟练地运用导数的运算性质和求导法则求具体函数的(高阶)导数和微分;理解和掌握可导与可微、可导与连续的概念及其相互关系;掌握左、右导数的概念以及分段函数求导方法,了解导函数的介值定理。

(七)微分学基本定理

1、中值定理:罗尔中值定理;拉格朗日中值定理;柯西中值定理。

2、泰勒公式。

要求:理解和掌握中值定理的内容、证明及其应用;了解泰勒公式及在近似计算中的应用, 能够把某些函数按泰勒公式展开

(八)导数的应用

1、函数的单调性与极值。

2、函数凹凸性与拐点。

3、几种特殊类型的未定式极限与洛必达法则。

要求:理解和掌握函数的单调性和凹凸性,会使用这些性质求函数的极值点以及拐点;能根据函数的单调性、凹凸性、拐点、渐近线等进行作图;能熟练地运用洛必达法则求未定式的极限。

(九)不定积分

1、不定积分概念。

2、换元积分法与分部积分法。

3、有理函数的积分。

要求:理解和掌握原函数和不定积分概念以及它们的关系;熟记不定积分基本公式,掌握换元积分法、分部积分法,会求初等函数、有理函数、三角函数的不定积分。

(十)定积分

1、定积分的概念;定积分的几何意义。

2、定积分存在的条件:可积的必要条件和充要条件;达布上和与达布下和;可积函数类(连续函数,只有有限个间断点的有界函数,单调函数)。

3、定积分的性质:四则运算;绝对值性质;区间可加性;不等式性质;积分中值定理。

4、定积分的计算:变上限积分函数;牛顿-莱布尼兹公式;换元公式;分部积分公式。要求:理解和掌握定积分概念、可积的条件以及可积函数类;熟练掌握和运用牛顿-莱布

尼兹公式,换元积分法,分部积分法求定积分。

(十一)定积分的应用

1、定积分的几何应用:微元法;求平面图形的面积;求平面曲线的弧长;求已知截面面积的立体或者旋转体的体积;求旋转曲面的面积。

2、定积分的物理应用:求质心;求功;求液体压力。

要求:理解和掌握"微元法";掌握定积分的几何应用;了解定积分的物理应用。

(十二)数项级数

1、预备知识:上、下极限;无穷级数收敛、发散的概念;收敛级数的基本性质;柯西收敛原理。

2、正项级数:比较判别法;达朗贝尔判别法;柯西判别法;积分判别法。

3、任意项级数:绝对收敛与条件收敛的概念及其性质;交错级数与莱布尼兹判别法;阿贝尔判别法与狄利克雷判别法。

要求:理解和掌握正项级数的收敛判别法以及交错级数的莱布尼兹判别法;掌握一般项级数的阿贝尔判别法与狄利克雷判别法;了解上、下极限的概念和性质以及绝对收敛和条件收敛的概念和性质。

(十三)反常积分

1、无穷限的反常积分:无穷限的反常积分的概念;无穷限的反常积分的敛散性判别法。

2、无界函数的反常积分:无界函数的反常积分的概念;无界函数的反常积分的敛散性判别法。

要求:理解和掌握反常积分的收敛、发散、绝对收敛、条件收敛的概念;掌握反常积分的柯西收敛准则,会判断某些反常积分的敛散性。

(十四)函数项级数

1、一致收敛的概念。

2、一致收敛的性质:连续性定理;可积性定理;可导性定理。

3、一致收敛的判别法;M-判别法;阿贝尔判别法;狄利克雷判别法。

要求:理解和掌握一致收敛的概念、性质及其证明;能够熟练地运用 M-判别法判断一些函数项级数的一致收敛性。

(十五)幂级数

1、幂级数的概念以及幂级数的收敛半径、收敛区间、收敛域。

2、幂级数的性质。

3、函数展开成幂级数。

要求:理解和掌握幂级数的概念,会求幂级数的和函数以及它的收敛半径、收敛区间、收敛域;掌握幂级数的性质以及两种将函数展开成幂级数的方法,会把一些函数直接或者间接展开成幂级数。

(十六)傅里叶级数

1、傅里叶级数:三角函数系的正交性;傅里叶系数。

2、以2p为周期的函数的傅里叶级数。

3、以 2L 为周期的傅里叶级数。

4、收敛定理的证明。

5、傅里叶变换。

要求:理解和掌握三角函数系的正交性与傅里叶级数的概念;掌握傅里叶级数收敛性判别法;能将一些函数展开成傅里叶级数;了解收敛定理的证明以及傅里叶变换的概念和性质。

(十七)多元函数极限与连续

1、平面点集与多元函数的概念。

2、二元函数的二重极限、二次极限。

3、二元函数的连续性。

要求:理解和掌握二元函数的二重极限、二次极限的概念以及它们之间的关系,会计算一些简单的二元函数的二重极限和二次极限;掌握平面点集、聚点的概念;了解平面点集的几个基本定理以及闭区域上多元连续函数的性质。

(十八)多元函数的微分学

1、偏导数与全微分:偏导数与全微分的概念;可微与可偏导、可微与连续、可偏导与连续的关系。

2、复合函数求偏导数以及隐函数求偏导数。

3、空间曲线的切线与法平面以及空间曲面的切平面和法线。

4、方向导数与梯度。

5、多元函数的泰勒公式。

6、极值和条件极值

要求:理解和掌握偏导数、全微分、方向导数、梯度的概念及其计算;掌握多元函数可微、可偏导和连续之间的关系;会求空间曲线的切线与法平面以及空间曲面的切平面和法线;会求函数的极值、最值;了解多元泰勒公式。

(十九)隐函数存在定理、函数相关

1、隐函数:隐函数存在定理;反函数存在定理;雅克比行列式。

2、函数相关。

要求:了解隐函数的概念及隐函数存在定理,会求隐函数的导数;了解函数行列式的性质以及函数相关。

(二十)含参变量积分以及反常积分

1、含参变量积分:积分与极限交换次序;积分与求导交换次序;两个积分号交换次序。

2、含参变量反常积分:含参变量反常积分的一致收敛性;一致收敛的判别法;欧拉积分、

B 函数、G函数。

要求:理解和掌握积分号下求导数的方法;掌握B 函数、G函数的性质及其相互关系;了解含参变量反常积分的一致收敛性以及一致收敛的判别法。

(二十一)重积分

1、重积分概念:重积分的概念;重积分的性质。

2、二重积分的计算:用直角坐标计算二重积分;用极坐标计算二重积分;用一般变换计算二重积分。

3、三重积分计算:用直角坐标计算三重积分;用柱面坐标计算三重积分;用球面坐标计算三重积分。

4、重积分应用:求物体的质心、转动惯量;求立体体积,曲面的面积;求引力。

要求:理解和掌握二重、三重积分的各种积分方法和特点,会选择最合适的方法进行积分; 掌握并合理运用重积分的对称性简化计算;了解柱面坐标和球面坐标积分元素的推导。

(二十二)曲线积分与曲面积分

1、第一类曲线积分:第一类曲线积分的概念、性质与计算;第一类曲线积分的对称性。

2、第二类曲线积分:第二类曲线积分的概念、性质与计算;两类曲线积分的联系。

3、第一类曲面积分:第一类曲面积分的概念、性质与计算;第一类曲面积分的对称性。

4、第二类曲面积分:曲面的侧;第二类曲面积分的概念、性质与计算;两类曲面积分的联系。

5、格林公式:曲线积分与路径的无关的四种等价叙述。

6、高斯公式。

7、斯托克斯公式。

8、场论初步:梯度;散度;旋度。

要求:理解和掌握两类曲线积分与曲面积分的概念、性质与计算,会使用对称性简化第一类曲线以及曲面积分;熟练掌握格林公式、高斯公式的证明并能利用它们求一些曲线积分和曲面积分;了解两类曲线积分及曲面积分的区别和联系;了解斯托克斯公式和场论初步。

二、考试形式

1. 考试时间:180 分钟。

2.试卷分值:150 分。

3.考试方式:闭卷考试。

原标题:2023年硕士研究生招生考试自命题科目考试大纲

文章来源:https://gr.xidian.edu.cn/info/1074/12375.htm

西安电子科技大学2023研究生考试大纲:601数学分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

带你看艺考
艺考信息时光机

重庆市2023年区县招生考试机构联系方式

重庆市2023普通高考报考信息-区县招生考试机构联系方式
重庆2023年高考招生机构联系方式
重庆高考招生资讯重庆2023年高考招生机构联系方式2022/10/25

重庆市2023年普通高考有关日程安排

重庆市2023年普通高考有关日程安排-为方便2023年高考考生及家长知晓有关工作日程安排,我院将在本页面适时更新、陆续发布普通高考工作时间节点,请家长和考生持续关注。如有疑问请咨询区县招生考试机构或市教育考试院信访咨询电话023-67869200。
2023重庆官方通知原文
重庆高考报名信息2023重庆官方通知原文2022/10/25

江苏2023年普通高等学校招生广播电视编导类专业省统考考试时间:2022年12月4日

江苏2023年普通高等学校招生广播电视编导类专业省统考考试时间:2022年12月4日,2023江苏广播电视编导类专业统考时间公布。
江苏广播电视编导类统考时间
江苏广播电视编导统考考试时间江苏广播电视编导类统考时间2022/10/25

江苏2023年普通高等学校招生音乐类专业省统考考试时间:2022年12月10日

江苏2023年普通高等学校招生音乐类专业省统考考试时间:2022年12月10日,2023江苏音乐类专业统考时间公布。
江苏音乐类统考时间
江苏音乐统考考试时间江苏音乐类统考时间2022/10/25

江苏2023年普通高等学校招生美术类专业省统考考试时间:2022年12月3日

江苏2023年普通高等学校招生美术类专业省统考考试时间:2022年12月3日,2023江苏美术类专业统考时间公布。
江苏美术类统考时间
江苏美术统考考试时间江苏美术类统考时间2022/10/25

江苏省2023年普通高校招生艺术类专业省统考考试时间和考点安排公布

江苏省2023年普通高校招生艺术类专业省统考考试时间和考点安排已确定,具体如下:一、美术类专业省统考定于2022年12月3日进行。二、广播电视编导专业省统考定于2022年12月4日进行。三、音乐类专业省统考笔试定于2022年12月10日进行,面试自12月12日起开始进行。
江苏省艺术类统考考试时间
江苏美术统考考试时间江苏省艺术类统考考试时间2022/10/25

江苏省2023年普通高校招生音乐类专业省统考声乐曲目库和伴奏音频公布

江苏省2023年普通高校招生音乐类专业省统考声乐曲目库和伴奏音频已经公布,现就有关问题说明如下:一、拟参加2023年音乐类专业省统考的高三学生及往届生凭本人考籍号登录南京师范大学音乐学院网站(网址:music.njnu.edu.cn)自行下载伴奏音频。
2023江苏音乐统考声乐曲目库,江苏音乐统考2023伴奏音频库
江苏音乐统考考试大纲2023江苏音乐统考声乐曲目库,江苏音乐统考2023伴奏音频库2022/10/25

设计学实力强劲的综合类大学汇总!

就设计专业水平而言,许多综合类大学大有赶超传统美院之势。今年的软科中国最好学科设计学排名中,前12名的院校中,超过一半都是综合类大学,下面一起来看看国内综合类大学中设计学科最强的几所院校吧~
设计学院校介绍
2023艺考设计学院校介绍2022/10/25

高考大类招生是什么?要注意哪些要点?

目前,越来越多的高校开始推行“大类招生”的招生模式,据了解,在“双一流”高校中,已有一半以上的高校实行了按大类招生,可见大类招生渐成趋势。那么,什么是大类招生?大类招生有哪些模式呢?本文整理了关于大类招生考生和家长关注的问题,供参考。
高考大类招生
2022高考高考大类招生2022/10/25

2023年广西普通高等学校招生艺术类专业全区统一考试航空服务类专业考试大纲与说明

航空服务类专业考试共计 3个科目,满分为300分,航空服务基本素质(200 分);语言表达(自备稿件,60分);才艺展示(40分)。
广西航空服务类统考大纲
广西航空服务统考考试大纲广西航空服务类统考大纲2022/10/24

2023年甘肃省普通高校招生戏剧与影视学(播音与主持艺术)类专业统一考试大纲

播音与主持艺术总分满分为 300 分,笔试、面试均按百分制进行评分,其中笔试占 20%,面试占 80%。
甘肃戏剧与影视学(播音与主持艺术)类统考大纲
甘肃戏剧与影视学统考考试大纲甘肃戏剧与影视学(播音与主持艺术)类统考大纲2022/10/24

2023年甘肃省普通高校招生戏剧与影视学(广播电视编导)类专业统一考试大纲

广播电视编导统考总分满分为 300 分,笔试一、笔试二均按百分制进行评分,其中笔试一占 40%,笔试二占 60%。
甘肃戏剧与影视学(广播电视编导)类统考大纲
甘肃戏剧与影视学统考考试大纲甘肃戏剧与影视学(广播电视编导)类统考大纲2022/10/24

2023年甘肃省普通高校招生美术(唐卡)类专业统一考试大纲

唐卡统考的考试科目为唐卡线描、唐卡色彩、唐卡图案速写。唐卡线描、唐卡图案速写采用图片的试题模式,唐卡色彩采用默写试题模式。
甘肃美术(唐卡)类统考大纲
甘肃美术统考考试大纲甘肃美术(唐卡)类统考大纲2022/10/24

2023年甘肃省普通高校招生美术(书法)类专业统一考试大纲

书法统考总分满分为 300 分,两科成绩均按百分制计分。其中临帖占 60%,创作占 40%。
甘肃美术(书法)类统考大纲
甘肃美术统考考试大纲甘肃美术(书法)类统考大纲2022/10/24

2023年甘肃省普通高校招生美术类专业统一考试大纲

美术设计类统考的考试科目为素描、色彩和速写。素描、色彩科目采用图片的试题模式,速写科目采用默写的试题模式。
甘肃美术类统考大纲
甘肃美术统考考试大纲甘肃美术类统考大纲2022/10/24

2023年甘肃省普通高校招生戏剧与影视学类专业统一考试大纲

戏剧与影视学类统考大纲包括广播电视编导、播音与主持艺术两类专业统考大纲,广播电视编导总分满分为 300 分,播音与主持艺术总分满分为 300 分。
甘肃戏剧与影视学类统考大纲
甘肃戏剧与影视学统考考试大纲甘肃戏剧与影视学类统考大纲2022/10/24

2023年甘肃省普通高校招生美术与设计学类专业统一考试大纲

美术与设计学类统考大纲包括美术、书法、唐卡三类专业考试大纲,三类专业考试满分皆为300分,具体考试科目不同。
甘肃美术类统考大纲
甘肃美术统考考试大纲甘肃美术类统考大纲2022/10/24

2023年甘肃省普通高校招生航空服务艺术与管理专业类专业统一考试大纲

航空服务统考采用面试形式,面试总分为 300 分。具体考试科目:(一)航空服务基本素质(200 分),(二)服务艺术(100 分)。
甘肃航空服务艺术与管理专业类统考大纲
甘肃航空服务艺术与管理专业统考考试大纲甘肃航空服务艺术与管理专业类统考大纲2022/10/24

2023年甘肃省普通高校招生舞蹈学类专业统一考试大纲

舞蹈统考包括舞蹈综合素质测试100分、民族民间舞组合展示100分、剧目片段表演100分。
甘肃舞蹈学类统考大纲
甘肃舞蹈统考考试大纲甘肃舞蹈学类统考大纲2022/10/24

2023年甘肃省普通高校招生音乐类专业统一考试大纲

音乐统考考试科目包括三科:1.主科(声乐或器乐或作曲,占比70%);2.音乐听觉(占比20%);3.基本乐理(占比10%)。
甘肃音乐类统考大纲
甘肃音乐统考考试大纲甘肃音乐类统考大纲2022/10/24
没有更多了?去看看其它艺考内容吧

艺考热搜

艺考数据
艺考资源站

  • 艺考分数线
  • 艺考简章