高中探究性学习报告(2)

学习报告
2012/3/2
通过上述的自主性探究活动,使学生体验从生活实例中,抽象出数学概念的方法,进一步探究它们之间具有的内在联系和各自特征,完成了对新知的主动建构过程。
怎样诱导学生参与和体验对新知的建构?本人体会到教师首先应该创设一种知识点存在于其中的教学情境,让每一名学生都能在情境中找到自己的位置。教师创设教学情境时,要充分了解全体学生已有的认知结构,给学生提供大量的客观信息,引导学生发现已有的认知结构与大量客观信息间的矛盾。然后,再诱导学生采用正确的“研究方法”去对这一矛盾进行研究,矛盾解决了,学生学到了研究方法(学习的方法),获得了知识,同时克服了困难,陶冶了品德,形成了更高、更强的能力。
三、探究性学习的有效途径是“数学实验”
即便是抽象的数学都是与生活中的实例密切相关,贴近生活,回归生活,以数学的角度去研究社会生活中和其他学科中出现的问题。让学生经历其中,亲手实验,才能感悟 “需要产生数学”的历史,由此体会数学的价值,体会前人创造数学的人生价值,激发学习的兴趣,从而自觉地关注和探究数学知识的形成和应用过程。
您可以访问第一范文网(www.网址未加载)查看更多与本文《高中探究性学习报告》相关的文章。如
例3:在讲“函数的应用举例”后,课本后安排有一实习作业,由于课堂时间有限,我要求学生将《高一数学》上册课本第142页第8题改写成一份实习报告,大约半节课的时间,学生的实习报告基本成雏形。在此列举其一:
实习报告 2002年12月8日
题目 某市区居民住房的兴建与拆除
实际问题 某市现有居民住房的总面积为a ㎡,其中需要拆除的旧住房面积占了一半。 当地有关部门决定在每年拆除一定数量x( ㎡)旧住房的情况下,仍以10%的住房增长率建设新房。
(1) 写出逐年(n)与住房总面积an之间的函数关系式。
(2) 如果10年后该地的住房总面积正好比目前翻一番,那么每年应拆除的旧住房总面积x(㎡ )是多少?(提示:计算时可取 为2.6)。
(3) 过10年还未拆除的旧住房总面积占当时住房总面积的百分比是多少?( 保留到小数点后第一位。)
建立函数关系式 an=1.1n a+10(1-1.1n)x
分析与解答 = a+10(1-1.110)x=2.6a-16x,
即2a=2.6a-16x,所以x= a.
因此,如果10年后该地的住房总面积正好比目前翻一番,那么每年应拆除的旧住房总面积x是 a㎡。
说明与解释 过10年还未拆除的旧住房总面积占当时住房总面积的6.3%)。(因为( a-10x)÷2a=6.3 %)。
负责人及参加人员 黄泽鑫 张长安 陈江滨 黄艺凤
这是学生自己编写的成果。当时我提了一个问题:如果你是某市区居民住房的兴建与拆除的领导,请问:题中涉及到“拆除与兴建”,我们先拆后建,还是先建后拆?以数学角度分析,二者有无区别?同学们瞬间议论纷纷,课堂一下子热闹起来,但很快就有了结论:先建后拆。我问一位平时有点淘气的同学,为何要先建后拆?他说如果我是领导,我得为我的子民着想,先拆后建,那他们住哪呀?然后以数学角度又分析了“先建后拆”和“先拆后建”的本质区别。我认为我们做老师的只要准确地找出问题的切入点,即时点评即可。
在教学活动中,教师应创造性使用教材,积极开发、利用各种资源,为学生提供丰富多彩的学习素材,成为学生数学活动的组织者、引导者、合作者,鼓励学生大胆创新与实践,使每个学生充分的发展。
四、探究性学习的动力是 “鼓励为主” 与“多元答案”。