2014广东交通职业技术学院自主招生考试大纲(2)

广东高考最新信息
2014/3/18
5.三角函数
考试内容:
角的概念的推广、弧度制。
任意角的三角函数,单位圆中的三角函数线,同角三角函数的基本关系式,正弦、余弦的诱导公式。
两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切。
正弦函数、余弦函数的图像和性质,周期函数,正切函数的图像和性质,已知三角函数值求角。
正弦定理、余弦定理、斜三角形解法。
考试要求:
(1)了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
(2)理解任意角的正弦、余弦、正切的定义。了解余切、正割、余割的定义,掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,了解周期函数与最小正周期的意义。
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式。
(4)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数的简图。
(6)会由已知三角函数值求角,并会用符号arcsinx ,arccosx ,arctanx表示。
(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。
6.数列
考试内容:
数列。
等差数列及其通项公式、等差数列前n项和公式。
等比数列及其通项公式、等比数列前n项和公式。
考试要求:
(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
7.直线和圆的方程
考试内容:
直线的倾斜角和斜率,直线方程的点斜式和两点式、直线方程的一般式。
两条直线平行与垂直的条件、两条直线的交角、点到直线的距离。
用二元一次不等式表示平面区域、简单的线性规划问题。
曲线与方程的概念、由已知条件列出曲线方程。
圆的标准方程和一般方程、圆的参数方程。
考试要求:
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。
(3)了解二元一次不等式表示平面区域。
(4)了解线性规划的意义,并会简单的应用。
(5)了解解析几何的基本思想,了解坐标法。
(6)掌握圆的标准方程和一般方程,了解参数方程的概念。理解圆的参数方程。
8.圆锥曲线方程
考试内容:
椭圆及其标准方程、椭圆的简单几何性质、椭圆的参数方程。
双曲线及其标准方程、双曲线的简单几何性质。
抛物线及其标准方程、抛物线的简单几何性质。
考试要求:
(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程。
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。
(4)了解圆锥曲线的初步应用。
9.直线、平面、简单几何体
考试内容:
平面及其基本性质、平面图形直观图的画法。
平行直线、对应边分别平行的角、异面直线所成的角、异面直线的公垂线、异面直线的距离。
直线和平面平行的判定与性质、直线和平面垂直的判定与性质、点到平面的距离、斜线在平面上的射影、直线和平面所成的角、三垂线定理及其逆定理。
平行平面的判定与性质、平行平面间的距离、二面角及其平面角、两个平面垂直的判定与性质、
多面体、正多面体、棱柱、棱锥、球。
考试要求:
(1)理解平面的基本性质,会用斜二侧的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离。
(3)掌握直线和平面平行的判定定理和性质定理,掌握直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握三垂线定理及其逆定理。
(4)掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。
(5)会用反证法证明简单的问题。
(6)了解多面体、凸多面体的概念,了解正多面体的概念。
(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
(9)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式。
10.排列、组合、二项式定理
考试内容:
分类计数原理与分步计数原理。
排列:排列数公式。
组合:组合数公式,组合数的两个性质。
二项式定理.二项展开式的性质。
考试要求:
(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
11.概率
考试内容:
随机事件的概率、等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验。
考试要求:
(1)了解随机事件的发生存在着规律性和随机事件概率的意义。
(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
(3)了解互斥事件与相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
(4)会计算事件在n次独立重复试验中恰好发生k次的概率。
12.统计
考试内容:
抽样方法、总体分布的估计。
总体期望值和方差的估计。